Clustering and classificationLaajuus (3 cr)
Code: TT00BS12
Credits
3 op
Teaching language
- Finnish
Objective
Opintojakson suoritettuaan opiskelija tuntee luokittelu- ja klusterointimenetelmien yleiset ominaisuudet sekä tyypilliset käyttökohteet. Lisäksi opiskelija oppii hyödyntämään luokittelu- ja klusterointimenetelmiä osana datankäsittelyprosessia. Opiskelija osaa myös arvioida eri menetelmien hyvyyttä ja tulosten oikeellisuutta.
Content
Klusterointi- ja luokittelumenetelmiä, esimerkiksi:
-K-means
-SVM
-Bayes-luokittelija
-KNN
Materials
Opettajan osoittama oppimateriaali
Assessment criteria, excellent (5)
Opiskelija osaa sujuvasti soveltaa eri luokittelu- ja klusterointimenetelmiä erilaisiin datasetteihin sekä ymmärtää eri menetelmien teoriataustan. Lisäksi opiskelija hallitsee luokitteluun ja klusterointiin liittyvät datankäsittelyprosessit. Opiskelija osoittaa oppimistaan reflektoimalla analyyttisesti ja kattavasti kaikkia palauttamiaan harjoitustehtäviä.
Assessment criteria, good (3)
Opiskelija osaa hyödyntää eri luokittelu- ja klusterointimenetelmiä erilaisiin datasetteihin sekä tietää eri menetelmien teoriataustan. Lisäksi opiskelija hallitsee luokitteluun ja klusterointiin liittyvät datankäsittelyprosessit. Opiskelija osoittaa oppimistaan reflektoimalla analyyttisesti palauttamiaan harjoitustehtäviä.
Assessment criteria, satisfactory (1)
Opiskelija osaa auttavasti hyödyntää luokittelu- ja klusterointimenetelmiä erilaisiin datasetteihin. Lisäksi opiskelija tuntee luokitteluun ja klusterointiin liittyvät datankäsittelyprosessit.
Enrollment
01.08.2022 - 30.09.2022
Timing
01.08.2022 - 30.10.2022
Number of ECTS credits allocated
3 op
Mode of delivery
Contact teaching
Unit
Teknologia
Teaching languages
- Finnish
Degree programmes
- Bachelor’s Degree in Information and Communication Technology
Teachers
- Jussi Ala-Hiiro
Groups
-
TTV21SAITTV21SAI
Objective
Opintojakson suoritettuaan opiskelija tuntee luokittelu- ja klusterointimenetelmien yleiset ominaisuudet sekä tyypilliset käyttökohteet. Lisäksi opiskelija oppii hyödyntämään luokittelu- ja klusterointimenetelmiä osana datankäsittelyprosessia. Opiskelija osaa myös arvioida eri menetelmien hyvyyttä ja tulosten oikeellisuutta.
Content
Klusterointi- ja luokittelumenetelmiä, esimerkiksi:
-K-means
-SVM
-Bayes-luokittelija
-KNN
Evaluation scale
0 - 5
Assessment criteria, excellent (5)
Opiskelija osaa sujuvasti soveltaa eri luokittelu- ja klusterointimenetelmiä erilaisiin datasetteihin sekä ymmärtää eri menetelmien teoriataustan. Lisäksi opiskelija hallitsee luokitteluun ja klusterointiin liittyvät datankäsittelyprosessit. Opiskelija osoittaa oppimistaan reflektoimalla analyyttisesti ja kattavasti kaikkia palauttamiaan harjoitustehtäviä.
Assessment criteria, good (3)
Opiskelija osaa hyödyntää eri luokittelu- ja klusterointimenetelmiä erilaisiin datasetteihin sekä tietää eri menetelmien teoriataustan. Lisäksi opiskelija hallitsee luokitteluun ja klusterointiin liittyvät datankäsittelyprosessit. Opiskelija osoittaa oppimistaan reflektoimalla analyyttisesti palauttamiaan harjoitustehtäviä.
Assessment criteria, satisfactory (1)
Opiskelija osaa auttavasti hyödyntää luokittelu- ja klusterointimenetelmiä erilaisiin datasetteihin. Lisäksi opiskelija tuntee luokitteluun ja klusterointiin liittyvät datankäsittelyprosessit.
Prerequisites
Python-ohjelmointi