Johdatus koneoppimiseen (5 op)
Toteutuksen tunnus: TT00CC61-3001
Toteutuksen perustiedot
Ilmoittautumisaika
01.08.2023 - 30.09.2023
Ajoitus
01.08.2023 - 31.12.2023
Opintopistemäärä
5 op
Toteutustapa
Lähiopetus
Yksikkö
Teknologia
Opetuskielet
- Suomi
Koulutus
- Tieto- ja viestintätekniikan koulutus
Opettaja
- Mikko Romppainen
Ryhmät
-
TTV22SAITTV22SAI
Tavoitteet
Opintojakson suoritettuaan opiskelija hallitsee tyypillisimpiä koneoppimistekniikoita ja ymmärtää niiden hyödyntämismahdollisuudet. Teoriaymmärryksen lisäksi opiskelija kykenee soveltamaan oppimiaan menetelmiä käytännön ongelmien ratkaisemiseen sekä omaa perusnäkemyksen koneoppimis- ja tekoälysovellusten toteuttamiseen liittyvistä hyvistä käytänteistä.
Sisältö
- Johdatus koneoppimiseen
- Työnkulun tyypilliset vaiheet
- Datan käsittelyn alkeet (Z-score, Box-Cox, jne.)
- Mallin suorituskyvyn mittaus (MSE, F1 jne.)
- Useita eri algoritmeja, kuten:
- Naive Bayes
- Päätöspuu
- k-NN
- k-Means
- Linear Regression (Hill Climbing ja/tai Gradient Descent)
Arviointiasteikko
0 - 5
Arviointikriteerit, kiitettävä (5)
Opiskelija käyttää asiantuntevasti ja laaja-alaisesti ammattialansa käsitteitä sekä yhdistää niitä kokonaisuuksiksi. Opiskelija osaa analysoida, reflektoida ja arvioida kriittisesti omaa osaamistaan ja ammattialansa toimintatapoja hankkimansa tiedon avulla. Opiskelija osaa myös valita ja arvioida kriittisesti ammattialansa tekniikoita ja malleja sekä käyttää niitä toiminnassaan ja soveltaa kriittisesti ammattieettisiä periaatteita toiminnassaan.
Arviointikriteerit, hyvä (3)
Opiskelija käyttää johdonmukaisesti ammattialansa käsitteitä ja osaa nimetä, kuvailla ja perustella ammattialansa perustiedot. Opiskelija valitsee tarkoituksenmukaisia toimintatapoja hankkimansa tiedon ja ohjeistuksen perusteella sekä soveltaa tarkoituksenmukaisesti ammattialansa toimintaan soveltuvia tekniikoita ja malleja. Opiskelija arvioi ja reflektoida omaa osaamistaan ja osaa perustella toimintansa ammattieettisten periaatteiden mukaisesti.
Arviointikriteerit, tyydyttävä (1)
Opiskelija käyttää asianmukaisesti keskeisiä kurssin aihepiirin käsitteitä ja osaa nimetä ammattialansa perustiedot. Opiskelija toimii tarkoituksenmukaisesti, joskin toiminta voi olla vielä epävarmaa ja vaatii ohjausta. Opiskelija käyttää toiminnassaan tarkoituksenmukaisesti ammattialansa tekniikoita ja malleja sekä toimii ammattieettisten periaatteiden mukaisesti.
Esitietovaatimukset
Git-, Python- ja Jupyter Notebook -osaaminen oltava vähintään perusteiden tasolla.