Data science mathematics 2 (3 cr)
Code: TT00CC18-3005
General information
- Enrollment
-
19.08.2024 - 22.09.2024
Registration for the implementation has ended.
- Timing
-
01.08.2024 - 31.12.2024
Implementation has ended.
- Number of ECTS credits allocated
- 3 cr
- Local portion
- 3 cr
- Mode of delivery
- Contact learning
- Unit
- Teknologia
- Teaching languages
- Finnish
- Degree programmes
- Bachelor’s Degree in Information and Communication Technology
Realization has 7 reservations. Total duration of reservations is 21 h 0 min.
Time | Topic | Location |
---|---|---|
Thu 29.08.2024 time 17:00 - 20:00 (3 h 0 min) |
Datatieteen matematiikka 2 TT00CC18-3005 |
Valkea talo Haaga
Valkea talo Haaga
|
Thu 05.09.2024 time 17:00 - 20:00 (3 h 0 min) |
Datatieteen matematiikka 2 TT00CC18-3005 |
Valkea talo Haaga
Valkea talo Haaga
|
Thu 12.09.2024 time 17:00 - 20:00 (3 h 0 min) |
Datatieteen matematiikka 2 TT00CC18-3005 |
Valkea talo Haaga
Valkea talo Haaga
|
Thu 19.09.2024 time 17:00 - 20:00 (3 h 0 min) |
Datatieteen matematiikka 2 TT00CC18-3005 |
Valkea talo Haaga
Valkea talo Haaga
|
Thu 26.09.2024 time 17:00 - 20:00 (3 h 0 min) |
Datatieteen matematiikka 2 TT00CC18-3005 |
Valkea talo Haaga
Valkea talo Haaga
|
Thu 03.10.2024 time 17:00 - 20:00 (3 h 0 min) |
Datatieteen matematiikka 2 TT00CC18-3005 |
Valkea talo Haaga
Valkea talo Haaga
|
Thu 10.10.2024 time 17:00 - 20:00 (3 h 0 min) |
Datatieteen matematiikka 2 TT00CC18-3005 |
Valkea talo Haaga
Valkea talo Haaga
|
Objective
The student masters the basics of linear algebra (vectors and matrices) and is able to apply them in practice.
The student masters the concept of derivative and knows how to apply derivation, e.g. in extreme value problems
Content
- vectors and matrices with applications
- derivative and its applications
Evaluation scale
0 - 5
Prerequisites
Data science mathematics 1
Objective
The student masters the basics of linear algebra (vectors and matrices) and is able to apply them in practice.
The student masters the concept of derivative and knows how to apply derivation, e.g. in extreme value problems
Execution methods
Lectures and exercises
Accomplishment methods
Tentti
Content
- vectors and matrices with applications
- derivative and its applications
Qualifications
Data science mathematics 1