Skip to main content

Data science mathematics 3 (3 cr)

Code: TT00CC19-3006

General information


Enrollment
18.08.2025 - 21.09.2025
Registration for introductions has not started yet.
Timing
01.08.2025 - 31.12.2025
Implementation is running.
Number of ECTS credits allocated
3 cr
Local portion
3 cr
Mode of delivery
Contact learning
Unit
Teknologia
Teaching languages
English
Finnish
Degree programmes
Bachelor’s Degree in Information and Communication Technology
Teachers
Hoa Ngo
Groups
TTM24SAI
TTM24SAI
Course
TT00CC19

Realization has 8 reservations. Total duration of reservations is 24 h 0 min.

Time Topic Location
Tue 21.10.2025 time 17:00 - 20:00
(3 h 0 min)
Datatieteen matematiikka 3, hybridi
Valkea talo Iso Luokka B2.206 Valkea talo Iso Luokka B2.206
Tue 28.10.2025 time 17:00 - 20:00
(3 h 0 min)
Datatieteen matematiikka 3, hybridi
Valkea talo Iso Luokka B2.206 Valkea talo Iso Luokka B2.206
Tue 04.11.2025 time 17:00 - 20:00
(3 h 0 min)
Datatieteen matematiikka 3, hybridi
Valkea talo Iso Luokka B2.206 Valkea talo Iso Luokka B2.206
Tue 11.11.2025 time 17:00 - 20:00
(3 h 0 min)
Datatieteen matematiikka 3, hybridi
Valkea talo Iso Luokka B2.206 Valkea talo Iso Luokka B2.206
Tue 18.11.2025 time 17:00 - 20:00
(3 h 0 min)
Datatieteen matematiikka 3, hybridi
Valkea talo Iso Luokka B2.206 Valkea talo Iso Luokka B2.206
Tue 25.11.2025 time 17:00 - 20:00
(3 h 0 min)
Datatieteen matematiikka 3, hybridi
Valkea talo Iso Luokka B2.206 Valkea talo Iso Luokka B2.206
Tue 02.12.2025 time 17:00 - 20:00
(3 h 0 min)
Datatieteen matematiikka 3, hybridi
Valkea talo Iso Luokka B2.206 Valkea talo Iso Luokka B2.206
Tue 09.12.2025 time 17:00 - 20:00
(3 h 0 min)
Datatieteen matematiikka 3, hybridi
Valkea talo Iso Luokka B2.206 Valkea talo Iso Luokka B2.206
Changes to reservations may be possible.

Evaluation scale

0 - 5

Objective

The student masters the concept of integral and is able to apply it e.g. for distributions of random variables
The student masters the basic concepts of functions of several variables, such as partial derivative and gradient, and is able to apply them in optimization problems, for example.

Execution methods

Lectures and exercises

Accomplishment methods

Exam

Content

- the integral and its applications
- functions of several variables
- optimization

Qualifications

Data science mathematics 1 and 2

Go back to top of page