Skip to main content

Data science mathematics 3 (3 cr)

Code: TT00CC19-3006

General information


Enrollment
02.07.2025 - 31.07.2025
Registration for introductions has not started yet.
Timing
01.08.2025 - 31.12.2025
The implementation has not yet started.
Number of ECTS credits allocated
3 cr
Local portion
3 cr
Mode of delivery
Contact learning
Unit
Teknologia
Teaching languages
English
Finnish
Degree programmes
Bachelor’s Degree in Information and Communication Technology
Teachers
Tommi Kauppinen
Groups
TTM24SAI
TTM24SAI
Course
TT00CC19

Realization has 8 reservations. Total duration of reservations is 24 h 0 min.

Time Topic Location
Tue 21.10.2025 time 17:00 - 20:00
(3 h 0 min)
Datatieteen matematiikka 3, hybridi
Keilaranta 14, Espoo Keilaranta 14, Espoo
Tue 28.10.2025 time 17:00 - 20:00
(3 h 0 min)
Datatieteen matematiikka 3, hybridi
Keilaranta 14, Espoo Keilaranta 14, Espoo
Tue 04.11.2025 time 17:00 - 20:00
(3 h 0 min)
Datatieteen matematiikka 3, hybridi
Keilaranta 14, Espoo Keilaranta 14, Espoo
Tue 11.11.2025 time 17:00 - 20:00
(3 h 0 min)
Datatieteen matematiikka 3, hybridi
Keilaranta 14, Espoo Keilaranta 14, Espoo
Tue 18.11.2025 time 17:00 - 20:00
(3 h 0 min)
Datatieteen matematiikka 3, hybridi
Keilaranta 14, Espoo Keilaranta 14, Espoo
Tue 25.11.2025 time 17:00 - 20:00
(3 h 0 min)
Datatieteen matematiikka 3, hybridi
Keilaranta 14, Espoo Keilaranta 14, Espoo
Tue 02.12.2025 time 17:00 - 20:00
(3 h 0 min)
Datatieteen matematiikka 3, hybridi
Keilaranta 14, Espoo Keilaranta 14, Espoo
Tue 09.12.2025 time 17:00 - 20:00
(3 h 0 min)
Datatieteen matematiikka 3, hybridi
Keilaranta 14, Espoo Keilaranta 14, Espoo
Changes to reservations may be possible.

Objective

The student masters the concept of integral and is able to apply it e.g. for distributions of random variables
The student masters the basic concepts of functions of several variables, such as partial derivative and gradient, and is able to apply them in optimization problems, for example.

Content

- the integral and its applications
- functions of several variables
- optimization

Evaluation scale

0 - 5

Prerequisites

Data science mathematics 1 and 2

Go back to top of page