Discrete Mathematics (3 cr)
Code: KTPM005-3011
General information
- Enrollment
-
30.12.2024 - 26.01.2025
Registration for the implementation has ended.
- Timing
-
01.01.2025 - 31.07.2025
Implementation is running.
- Number of ECTS credits allocated
- 3 cr
- Local portion
- 3 cr
- Mode of delivery
- Contact learning
- Unit
- Teknologia
- Teaching languages
- Finnish
- Degree programmes
- Bachelor’s Degree in Business Information Technology
Realization has 20 reservations. Total duration of reservations is 30 h 0 min.
Time | Topic | Location |
---|---|---|
Tue 14.01.2025 time 12:45 - 14:15 (1 h 30 min) |
Diskreetti matematiikka KTPM005-3011 |
TA12L127
TA12L127
|
Thu 16.01.2025 time 12:45 - 14:15 (1 h 30 min) |
Diskreetti matematiikka KTPM005-3011 |
TA12L127
TA12L127
|
Tue 21.01.2025 time 12:45 - 14:15 (1 h 30 min) |
Diskreetti matematiikka KTPM005-3011 |
TA12L127
TA12L127
|
Thu 23.01.2025 time 12:45 - 14:15 (1 h 30 min) |
Diskreetti matematiikka KTPM005-3011 |
TA12L127
TA12L127
|
Tue 28.01.2025 time 12:45 - 14:15 (1 h 30 min) |
Diskreetti matematiikka KTPM005-3011 |
TA12L127
TA12L127
|
Thu 30.01.2025 time 12:45 - 14:15 (1 h 30 min) |
Diskreetti matematiikka KTPM005-3011 |
TA12L127
TA12L127
|
Tue 04.02.2025 time 12:45 - 14:15 (1 h 30 min) |
Diskreetti matematiikka KTPM005-3011 |
TA12L127
TA12L127
|
Thu 06.02.2025 time 12:45 - 14:15 (1 h 30 min) |
Diskreetti matematiikka KTPM005-3011 |
TA12L127
TA12L127
|
Tue 11.02.2025 time 12:45 - 14:15 (1 h 30 min) |
Diskreetti matematiikka KTPM005-3011 |
TA12L127
TA12L127
|
Thu 13.02.2025 time 12:45 - 14:15 (1 h 30 min) |
Diskreetti matematiikka KTPM005-3011 |
TA12L127
TA12L127
|
Tue 18.02.2025 time 12:45 - 14:15 (1 h 30 min) |
Diskreetti matematiikka KTPM005-3011 |
TA12L127
TA12L127
|
Thu 20.02.2025 time 12:45 - 14:15 (1 h 30 min) |
Diskreetti matematiikka KTPM005-3011 |
TA12L127
TA12L127
|
Tue 25.02.2025 time 12:45 - 14:15 (1 h 30 min) |
Diskreetti matematiikka KTPM005-3011 |
TA12L127
TA12L127
|
Thu 27.02.2025 time 12:45 - 14:15 (1 h 30 min) |
Diskreetti matematiikka KTPM005-3011 |
TA12L127
TA12L127
|
Tue 11.03.2025 time 12:45 - 14:15 (1 h 30 min) |
Diskreetti matematiikka KTPM005-3011 |
TA12L127
TA12L127
|
Thu 13.03.2025 time 12:45 - 14:15 (1 h 30 min) |
Diskreetti matematiikka KTPM005-3011 |
TA12L127
TA12L127
|
Tue 18.03.2025 time 12:45 - 14:15 (1 h 30 min) |
Diskreetti matematiikka KTPM005-3011 |
TA12L127
TA12L127
|
Wed 19.03.2025 time 08:30 - 10:00 (1 h 30 min) |
Diskreetti matematiikka KTPM005-3011 |
TA12L127
TA12L127
|
Tue 25.03.2025 time 12:45 - 14:15 (1 h 30 min) |
Diskreetti matematiikka KTPM005-3011 |
TA12L127
TA12L127
|
Wed 26.03.2025 time 10:15 - 11:45 (1 h 30 min) |
Diskreetti matematiikka KTPM005-3011 |
TA12L127
TA12L127
|
Objective
Students will know basic computing mathematics, and the logical expressions required in programming, the significance of mathemtical models and the basics of probability calculation.
Content
Clarifying logical expressions
Numerical systems and their conversions
Boolean algebra
Set theory
An introduction to probability calculation and its applications
Evaluation scale
0 - 5
Assessment criteria, excellent (5)
The students know how to form and reduce logic expressions. They know the operations of set theory and can form and reduce mathematical expressions using them. They can draw logic circuits from Boolean expressions and know the transformations between different number systems and calculations. They know how to calculate the amount of sequences and subsets and demanding probabilities.
Assessment criteria, good (3)
The students know what logic connectives are and can form truth value tables between them. They know the operations and rules of calculating set theory and can draw logic circuits from Boolean expressions. The students are proficient in the transformations between different number systems and can calculate probabilities using product calculation and addition rules.
Assessment criteria, satisfactory (1)
The students know what logical connectives mean, and they know the operations of set theory and can draw Venn diagrams using them. They can draw simple, logic circuits from Boolean expressions. They can do number system transformations between 10 and 2 systems and know other number systems. They can carry out simple calculations of probability.