Skip to main content

Discrete Mathematics (3cr)

Code: KTPM005-3012

General information


Enrollment
30.12.2025 - 26.01.2026
Registration for introductions has not started yet.
Timing
01.01.2026 - 30.04.2026
The implementation has not yet started.
Number of ECTS credits allocated
3 cr
Unit
Teknologia
Teaching languages
Finnish
Degree programmes
Bachelor’s Degree in Business Information Technology
Teachers
Ari Teirilä
Groups
TTK25SD
TTK25SD
Course
KTPM005

Realization has 20 reservations. Total duration of reservations is 30 h 0 min.

Time Topic Location
Tue 13.01.2026 time 12:45 - 14:15
(1 h 30 min)
Diskreetti matematiikka KTPM005-3012
TA12L125 TA12L125
Thu 15.01.2026 time 12:45 - 14:15
(1 h 30 min)
Diskreetti matematiikka KTPM005-3012
TA12L125 TA12L125
Tue 20.01.2026 time 12:45 - 14:15
(1 h 30 min)
Diskreetti matematiikka KTPM005-3012
TA12L125 TA12L125
Thu 22.01.2026 time 12:45 - 14:15
(1 h 30 min)
Diskreetti matematiikka KTPM005-3012
TA12L125 TA12L125
Tue 27.01.2026 time 12:45 - 14:15
(1 h 30 min)
Diskreetti matematiikka KTPM005-3012
TA12L125 TA12L125
Thu 29.01.2026 time 12:45 - 14:15
(1 h 30 min)
Diskreetti matematiikka KTPM005-3012
TA12L125 TA12L125
Tue 03.02.2026 time 12:45 - 14:15
(1 h 30 min)
Diskreetti matematiikka KTPM005-3012
TA12L125 TA12L125
Thu 05.02.2026 time 12:45 - 14:15
(1 h 30 min)
Diskreetti matematiikka KTPM005-3012
TA12L125 TA12L125
Tue 10.02.2026 time 12:45 - 14:15
(1 h 30 min)
Diskreetti matematiikka KTPM005-3012
TA12L125 TA12L125
Thu 12.02.2026 time 12:45 - 14:15
(1 h 30 min)
Diskreetti matematiikka KTPM005-3012
TA12L125 TA12L125
Tue 17.02.2026 time 12:45 - 14:15
(1 h 30 min)
Diskreetti matematiikka KTPM005-3012
TA12L125 TA12L125
Thu 19.02.2026 time 12:45 - 14:15
(1 h 30 min)
Diskreetti matematiikka KTPM005-3012
TA12L125 TA12L125
Tue 24.02.2026 time 12:45 - 14:15
(1 h 30 min)
Diskreetti matematiikka KTPM005-3012
TA12L125 TA12L125
Thu 26.02.2026 time 12:45 - 14:15
(1 h 30 min)
Diskreetti matematiikka KTPM005-3012
TA12L125 TA12L125
Mon 09.03.2026 time 08:30 - 10:00
(1 h 30 min)
Diskreetti matematiikka KTPM005-3012
TA12L125 TA12L125
Tue 10.03.2026 time 10:15 - 11:45
(1 h 30 min)
Diskreetti matematiikka KTPM005-3012
TA12L125 TA12L125
Mon 16.03.2026 time 10:15 - 11:45
(1 h 30 min)
Diskreetti matematiikka KTPM005-3012
TA12L125 TA12L125
Tue 17.03.2026 time 10:15 - 11:45
(1 h 30 min)
Diskreetti matematiikka KTPM005-3012
TA12L125 TA12L125
Mon 23.03.2026 time 10:15 - 11:45
(1 h 30 min)
Diskreetti matematiikka KTPM005-3012
TA12L125 TA12L125
Tue 24.03.2026 time 10:15 - 11:45
(1 h 30 min)
Diskreetti matematiikka KTPM005-3012
TA12L125 TA12L125
Changes to reservations may be possible.

Evaluation scale

0 - 5

Objective

Students will know basic computing mathematics, and the logical expressions required in programming, the significance of mathemtical models and the basics of probability calculation.

Content

Clarifying logical expressions
Numerical systems and their conversions
Boolean algebra
Set theory
An introduction to probability calculation and its applications

Assessment criteria, satisfactory (1)

The students know what logical connectives mean, and they know the operations of set theory and can draw Venn diagrams using them. They can draw simple, logic circuits from Boolean expressions. They can do number system transformations between 10 and 2 systems and know other number systems. They can carry out simple calculations of probability.

Assessment criteria, good (3)

The students know what logic connectives are and can form truth value tables between them. They know the operations and rules of calculating set theory and can draw logic circuits from Boolean expressions. The students are proficient in the transformations between different number systems and can calculate probabilities using product calculation and addition rules.

Assessment criteria, excellent (5)

The students know how to form and reduce logic expressions. They know the operations of set theory and can form and reduce mathematical expressions using them. They can draw logic circuits from Boolean expressions and know the transformations between different number systems and calculations. They know how to calculate the amount of sequences and subsets and demanding probabilities.

Go back to top of page