Advanced Methods of Data Processing (5cr)
Code: TT00CC57-3006
General information
- Enrollment
- 30.12.2025 - 26.01.2026
- Registration for the implementation has begun.
- Timing
- 01.01.2026 - 31.07.2026
- The implementation has not yet started.
- Number of ECTS credits allocated
- 5 cr
- Unit
- Teknologia
- Teaching languages
- Finnish
- Degree programmes
- Bachelor’s Degree in Information and Communication Technology
Realization has 7 reservations. Total duration of reservations is 8 h 0 min.
| Time | Topic | Location |
|---|---|---|
|
Thu 15.01.2026 time 17:00 - 19:00 (2 h 0 min) |
Aloitusluento_Datan käsittelyn kehittyneet menetelmät TT00CC57-3006 |
Teams
|
|
Thu 29.01.2026 time 17:00 - 18:00 (1 h 0 min) |
Q&A_Datan käsittelyn kehittyneet menetelmät TT00CC57-3006 |
Teams
|
|
Thu 12.02.2026 time 17:00 - 18:00 (1 h 0 min) |
Q&A_Datan käsittelyn kehittyneet menetelmät TT00CC57-3006 |
Teams
|
|
Tue 24.02.2026 time 17:00 - 18:00 (1 h 0 min) |
Q&A_Datan käsittelyn kehittyneet menetelmät TT00CC57-3006 |
Teams
|
|
Wed 18.03.2026 time 17:00 - 18:00 (1 h 0 min) |
Q&A_Datan käsittelyn kehittyneet menetelmät TT00CC57-3006 |
Teams
|
|
Wed 01.04.2026 time 17:00 - 18:00 (1 h 0 min) |
Q&A_Datan käsittelyn kehittyneet menetelmät TT00CC57-3006 |
Teams
|
|
Wed 15.04.2026 time 17:00 - 18:00 (1 h 0 min) |
Q&A_Datan käsittelyn kehittyneet menetelmät TT00CC57-3006 |
Teams
|
Evaluation scale
0 - 5
Objective
The goal of the course is to get to know the advanced methods of data processing, using the python libraries NumPy, Pandas, and Matplotlib. The course covers the calculation of data characteristics, data distributions, data visualization and the use of regular expressions (regex). The course also introduces data clustering.
Using these methods, the course creates a data processing chain (pipeline), which is used to perform feature engineering from the data.
Assessment criteria, satisfactory (1)
The course consists of several exercises. At least 50% of the course's practice points must be accumulated for grade 1.
Assessment criteria, excellent (5)
The course consists of several exercises. At least 92% of the course's practice points must be accumulated for a grade of 5.
Qualifications
Python programming
Modern software development
Algebra