Data platforms (5 cr)
Code: TT00CM57-3003
General information
- Enrollment
-
02.07.2026 - 31.07.2026
Registration for introductions has not started yet.
- Timing
-
01.08.2026 - 31.12.2026
The implementation has not yet started.
- Number of ECTS credits allocated
- 5 cr
- Local portion
- 5 cr
- Mode of delivery
- Blended learning
- Unit
- Teknologia
- Teaching languages
- Finnish
- Degree programmes
- Bachelor’s Degree in Information and Communication Technology
Evaluation scale
0 - 5
Content scheduling
Kurssin ensimmäinen puolisko (noin 6 viikkoa); hankittu osaaminen todennetaan tentin avulla. Kurssin toinen puolisko (noin 4 viikkoa); hankittu osaaminen näytetään 10 minuutin videon avulla, jossa esittelet toteuttamasi, tehtävänannon mukaisen data-alustan.
Objective
The student understands the need for data platforms from the starting points of business success. The student knows how to utilize and develop modern data platforms and automate data processing and data analysis workflows (MLOps, DataOps) in order to make the work steps more efficient and improve the quality of the analysis.
Content
Best practices for data platform development, automation of data processing work steps and data platform architecture planning.
Materials
Linkit oppimateriaaliin, mahdollisiin luentojen tallenteisiin sekä lukuvinkit löytyvät Reppu-alustan "Aloita tästä"-osiosta.
Teaching methods
Teams-luennot, etukäteen nauhoitetut tutoriaalit sekä itsenäisesti tehtävät harjoitukset. Luentojen tallennekäytäntö sovitaan kurssin alussa yhteisesti.
Assessment criteria, satisfactory (1)
The student understands the importance of a data platform for business and can, with assistance, develop a simple data platform.
Assessment criteria, good (3)
The student understands the importance of the data platform, the automation of work steps and knows how to develop a data platform suitable for the company's needs.
Assessment criteria, excellent (5)
The student understands the importance of a data platform for business and knows how to implement a data platform that supports business. The student knows how to automate the work steps of data processing and refine raw data into a versatile data platform.