Siirry suoraan sisältöön

Koneoppimisen perusteet (3 op)

Toteutuksen tunnus: TT00CE27-3002

Toteutuksen perustiedot


Ilmoittautumisaika
02.07.2026 - 31.07.2026
Ilmoittautuminen toteutukselle ei ole vielä alkanut.
Ajoitus
01.08.2026 - 31.12.2026
Toteutus ei ole vielä alkanut.
Opintopistemäärä
3 op
Lähiosuus
3 op
Toteutustapa
Monimuoto-opetus
Yksikkö
Teknologia
Opetuskielet
suomi
Koulutus
Tieto- ja viestintätekniikan koulutus
Opettajat
Jani Sourander
Ryhmät
TTV24SP
TTV24SP
Opintojakso
TT00CE27
Toteutukselle TT00CE27-3002 ei löytynyt varauksia!

Arviointiasteikko

0 - 5

Sisällön jaksotus

Kurssi etenee viikoittain siten, että eri viikoilla on eri aihe. Kukin aihe tai algoritmi käsitellään kyseisen viikon aikana, ja siihen liittyy harjoitustehtävä, jossa sinun tulee kouluttaa koneoppimismalli annetulla datasetillä. Mallin koulutetaan omalla kotikoneella eikä niihin tarvitse erityisen suurta laskentatehoa. Harjoitukset ovat aktivoiva elementti, joiden perusteella kirjoitat oppimispäiväkirjaa. Pelkkä toimiva ja toimitettu koodi ei siis riitä: on tärkeää, että osaat perustella tekemäsi ratkaisut ja esitellä lähteet, joista olet ratkaisuun löytänyt apua.

Aiheet ovat:

1. Koneoppiminen
2. Datasetti
3. Puut
4. k-NN
5. k-Means
6. Linear Regression
7. Logistic Regression

Tarkempi aikataulutus ja listaus materiaaleista per viikko esitellään kurssin aikana.

Aika ja paikka

Lähiopetus

Oppimateriaalit

Linkit mahdollisiin Teams-luentojen tallenteisiin sekä lukuvinkit löytyvät Reppu-alustan "Aloita tästä"-osiosta. Kurssin virallinen oppikirja on KAMK Finnasta löytyvä:

Géron, A. (2022). *Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems* (Third edition.). O'Reilly Media, Inc.

YouTube-materiaalissa, johon saat linkin Reppu-sivustolta, käydään läpi seuraavan sivuston sisältö: https://sourander.github.io/ml-perusteet/

Opetusmenetelmät

Oppimispäiväkirja, etukäteen tallennetut YouTube-luennot, live-Teams-luennot, ja itsenäisesti tehtävät harjoitukset. Oppimispäiväkirjaan kirjoitetaan yksi merkintä per viikko ja päivä julkaistaan GitLab Pages -formaatissa opettajan luomaan GitLab-projektiin. Päiväkirja hyödyntää Material for MkDocs -teemaa. Tähän tarjotaan ohjeistus sekä kurssilla että apusivustolla: https://sourander.github.io/oat/

Tämä kurssi hyödyntää samoja materiaaleja kuin laajempi 5 opintopisteen kokonaisuus, mutta joitakin aihealueita ja tehtäviä on supistettu pois.

Toteutuksen valinnaiset suoritustavat

Ota yhteyttä opettajaan.

Opiskelijan ajankäyttö ja kuormitus

Luennoille osallistumisen tai niiden tallenteiden katsomisen lisäksi opiskelijan oletetaan käyttävän viikoittain kurssin laajuutta vastaava määrä tunteja tehtävien tekemiseen, itsensä kehittämiseen ja tämän prosessin dokumentointiin oppimispäiväkirjamuodossa.

Lisätiedot

Harjoitustöissä saa käyttää tekoälyä ratkaisujen kartoittamiseen ja oppimisen tukena. Tekoälyn kirjoittama koodi tulee testata, kommentoida ja koodin sekä koneoppimismallin toimintaperiaate tulee ottaa selville. Oppimispäiväkirjassa esitettyjen johtopäätösten tulee olla sinun omia, mutta tietopohjan tulee perustua lähteisiin. Kielimalli itsessään ei ole luotettava lähde: tarkista kielimallin tulosteen väitteet lähteisiin nojaten.

Siirry alkuun