Generative Adversial Networks (GAN) ja deep fakeLaajuus (5 cr)
Course unit code: TT00CF28
General information
- Credits
- 5 cr
- Teaching language
- Finnish
Objective
Generatiiviset kilpailevat verkostot (Generative Adversarial Networks, GAN) ovat kaiken nykyisen ”deep fake”-nimityksen mukaisen kuva- ja videomanipulaation taustalla. Tällä kurssilla opiskelijat pääsevät tutustumaan GAN-tekoälyyn sekä käytännön että teorian näkökulmasta. Kurssi on Moodlessa itsenäisesti tai ryhmässä suoritettava kurssi, ja se sisältää sekä koodausta että kirjallisia töitä. Alun aiheeseen tutustumisen jälkeen kurssilla koodataan kuvamanipulaattori, jolla voi tuottaa keinotekoisen kuvan, joka muistuttaa täysin aitoa. Lisäksi kurssilla analysoidaan manipuloituja kuvia ja pyritään erottamaan ne aidoista. Kurssin aikana tehdyistä löydöksistä kirjoitetaan loppuraportti. Kurssi arvioidaan arvosanalla 1-5.
Content
Kurssilla tehdään alkuessee ja tutustutaan opetusmateriaaliin ja GAN-verkkoja käsitteleviin tieteellisiin julkaisuihin. Kurssilla ohjelmoidaan kaksi GAN-koodia, joista toinen on täydennettävä itse ja toinen tehdään alusta saakka. Lopuksi kirjoitetaan loppuraportti kurssin aikana tehdyistä havainnoista.
Assessment criteria, excellent (5)
Loppuraportti on selkeä ja osoittaa erinomaista ymmärrystä sekä GAN-verkkojen teoriasta että koodaamisesta. Deep fake -tunnistamisesta tehdyt havainnot ovat oikeat ja täsmällisesti selitetty.
Assessment criteria, good (3)
Loppuraportti on kohtuullisen selkeä ja osoittaa hyvää ymmärrystä sekä GAN-verkkojen teoriasta että koodaamisesta. Deep fake -tunnistamisesta tehdyt havainnot ovat jossain määrin oikeita ja ymmärrettävästi selitetty.
Assessment criteria, satisfactory (1)
Loppuraportti on ymmärrettävä ja osoittaa riittävää ymmärrystä sekä GAN-verkkojen teoriasta että koodaamisesta. Deep fake -tunnistamisesta tehdyt havainnot ovat välillä oikeita ja jossain määrin selitetty.
Execution methods
Kurssi toteutetaan verkon yli mahdollisimman itsenäisenä työskentelynä.
Accomplishment methods
Kurssin voi suorittaa palauttamalla ajallaan sekä alkuesseen, molemmat koodit ja loppuraportin. Joissain tapauksissa koodit voi tehdä myös ryhmätyönä. Kurssin arvosana määräytyy loppuraportin perusteella.