Skip to main content

Introduction to machine learningLaajuus (5 cr)

Code: TT00CC61

Credits

5 op

Teaching language

  • Finnish

Objective

Opintojakson suoritettuaan opiskelija hallitsee tyypillisimpiä koneoppimistekniikoita ja ymmärtää niiden hyödyntämismahdollisuudet. Teoriaymmärryksen lisäksi opiskelija kykenee soveltamaan oppimiaan menetelmiä käytännön ongelmien ratkaisemiseen sekä omaa perusnäkemyksen koneoppimis- ja tekoälysovellusten toteuttamiseen liittyvistä hyvistä käytänteistä.

Content

- Johdatus koneoppimiseen
- Työnkulun tyypilliset vaiheet
- Datan käsittelyn alkeet (Z-score, Box-Cox, jne.)
- Mallin suorituskyvyn mittaus (MSE, F1 jne.)
- Useita eri algoritmeja, kuten:
- Naive Bayes
- Päätöspuu
- k-NN
- k-Means
- Linear Regression (Hill Climbing ja/tai Gradient Descent)

Materials

Oppimateriaali koostuu luennoista tai luentovideoista, koodausharjoituksista sekä end-to-end harjoituksista, joissa ratkaistaan opettajan määrittelemä koneoppimisongelma kurssilla esiteltyjä työkaluja käyttäen. Kunkin kurssin toteutuksen alussa jaetaan tarkempi lista suositelluista oppimateriaaleista ja lähteistä.

Assessment criteria, excellent (5)

Opiskelija käyttää asiantuntevasti ja laaja-alaisesti ammattialansa käsitteitä sekä yhdistää niitä kokonaisuuksiksi. Opiskelija osaa analysoida, reflektoida ja arvioida kriittisesti omaa osaamistaan ja ammattialansa toimintatapoja hankkimansa tiedon avulla. Opiskelija osaa myös valita ja arvioida kriittisesti ammattialansa tekniikoita ja malleja sekä käyttää niitä toiminnassaan ja soveltaa kriittisesti ammattieettisiä periaatteita toiminnassaan.

Assessment criteria, good (3)

Opiskelija käyttää johdonmukaisesti ammattialansa käsitteitä ja osaa nimetä, kuvailla ja perustella ammattialansa perustiedot. Opiskelija valitsee tarkoituksenmukaisia toimintatapoja hankkimansa tiedon ja ohjeistuksen perusteella sekä soveltaa tarkoituksenmukaisesti ammattialansa toimintaan soveltuvia tekniikoita ja malleja. Opiskelija arvioi ja reflektoida omaa osaamistaan ja osaa perustella toimintansa ammattieettisten periaatteiden mukaisesti.

Assessment criteria, satisfactory (1)

Opiskelija käyttää asianmukaisesti keskeisiä kurssin aihepiirin käsitteitä ja osaa nimetä ammattialansa perustiedot. Opiskelija toimii tarkoituksenmukaisesti, joskin toiminta voi olla vielä epävarmaa ja vaatii ohjausta. Opiskelija käyttää toiminnassaan tarkoituksenmukaisesti ammattialansa tekniikoita ja malleja sekä toimii ammattieettisten periaatteiden mukaisesti.

en
Enrollment

02.07.2025 - 31.07.2025

Timing

01.08.2025 - 31.12.2025

Number of ECTS credits allocated

5 op

Mode of delivery

Contact teaching

Unit

Teknologia

Teaching languages
  • Finnish
Degree programmes
  • Bachelor’s Degree in Information and Communication Technology
Teachers
  • Jani Sourander
Groups
  • TTM24SAI
    TTM24SAI

Objective

Opintojakson suoritettuaan opiskelija hallitsee tyypillisimpiä koneoppimistekniikoita ja ymmärtää niiden hyödyntämismahdollisuudet. Teoriaymmärryksen lisäksi opiskelija kykenee soveltamaan oppimiaan menetelmiä käytännön ongelmien ratkaisemiseen sekä omaa perusnäkemyksen koneoppimis- ja tekoälysovellusten toteuttamiseen liittyvistä hyvistä käytänteistä.

Content

- Johdatus koneoppimiseen
- Työnkulun tyypilliset vaiheet
- Datan käsittelyn alkeet (Z-score, Box-Cox, jne.)
- Mallin suorituskyvyn mittaus (MSE, F1 jne.)
- Useita eri algoritmeja, kuten:
- Naive Bayes
- Päätöspuu
- k-NN
- k-Means
- Linear Regression (Hill Climbing ja/tai Gradient Descent)

Evaluation scale

0 - 5

Assessment criteria, excellent (5)

Opiskelija käyttää asianmukaisesti keskeisiä kurssin aihepiirin käsitteitä ja osaa nimetä ammattialansa perustiedot. Opiskelija toimii tarkoituksenmukaisesti, joskin toiminta voi olla vielä epävarmaa ja vaatii ohjausta. Opiskelija käyttää toiminnassaan tarkoituksenmukaisesti ammattialansa tekniikoita ja malleja sekä toimii ammattieettisten periaatteiden mukaisesti.

Assessment criteria, good (3)

Opiskelija käyttää johdonmukaisesti ammattialansa käsitteitä ja osaa nimetä, kuvailla ja perustella ammattialansa perustiedot. Opiskelija valitsee tarkoituksenmukaisia toimintatapoja hankkimansa tiedon ja ohjeistuksen perusteella sekä soveltaa tarkoituksenmukaisesti ammattialansa toimintaan soveltuvia tekniikoita ja malleja. Opiskelija arvioi ja reflektoida omaa osaamistaan ja osaa perustella toimintansa ammattieettisten periaatteiden mukaisesti.

Assessment criteria, satisfactory (1)

Opiskelija käyttää asiantuntevasti ja laaja-alaisesti ammattialansa käsitteitä sekä yhdistää niitä kokonaisuuksiksi. Opiskelija osaa analysoida, reflektoida ja arvioida kriittisesti omaa osaamistaan ja ammattialansa toimintatapoja hankkimansa tiedon avulla. Opiskelija osaa myös valita ja arvioida kriittisesti ammattialansa tekniikoita ja malleja sekä käyttää niitä toiminnassaan ja soveltaa kriittisesti ammattieettisiä periaatteita toiminnassaan.

Prerequisites

Git-, Python- ja Jupyter Notebook -osaaminen oltava vähintään perusteiden tasolla.

en
Enrollment

19.08.2024 - 22.09.2024

Timing

01.08.2024 - 31.12.2024

Number of ECTS credits allocated

5 op

Mode of delivery

Contact teaching

Unit

Teknologia

Teaching languages
  • Finnish
Degree programmes
  • Bachelor’s Degree in Information and Communication Technology
Teachers
  • Jani Sourander
Groups
  • TTM23SAI
    TTM23SAI

Objective

Opintojakson suoritettuaan opiskelija hallitsee tyypillisimpiä koneoppimistekniikoita ja ymmärtää niiden hyödyntämismahdollisuudet. Teoriaymmärryksen lisäksi opiskelija kykenee soveltamaan oppimiaan menetelmiä käytännön ongelmien ratkaisemiseen sekä omaa perusnäkemyksen koneoppimis- ja tekoälysovellusten toteuttamiseen liittyvistä hyvistä käytänteistä.

Content

- Johdatus koneoppimiseen
- Työnkulun tyypilliset vaiheet
- Datan käsittelyn alkeet (Z-score, Box-Cox, jne.)
- Mallin suorituskyvyn mittaus (MSE, F1 jne.)
- Useita eri algoritmeja, kuten:
- Naive Bayes
- Päätöspuu
- k-NN
- k-Means
- Linear Regression (Hill Climbing ja/tai Gradient Descent)

Materials

Linkit oppimateriaaliin, mahdollisiin luentojen tallenteisiin sekä lukuvinkit löytyvät Reppu-alustan "Aloita tästä"-osiosta. Kirja "An Introduction to Statistical Learning with Application in Python" toimii virallisen kurssimateriaalin tukevana kirjallisuutena. Lisäksi oppimispäiväkirjan tueksi on suositeltavaa etsiä muuta kirjallisuutta omatoimisesti.

Teaching methods

Oppimispäiväkirja, luennot, ja itsenäisesti tehtävät harjoitukset. Luentojen tallennekäytäntö sovitaan kurssin alussa yhteisesti. Oppimispäiväkirja on laadittava Oppimispäiväkirja 101 -ohjeen mukaisesti käyttäen. Ohje sijaitsee osoitteesta: https://sourander.github.io/oat/

Completion alternatives

Ota yhteyttä opettajaan, mikäli on tarve AHOT-prosessiin tai muutoin vaihtoehtoiseen tapaan osoittaa kurssilla vaadittu osaaminen.

Student workload

Luennoille osallistumisen tai niiden tallenteiden katsomisen lisäksi opiskelijan oletetaan käyttävän viikoittain kurssin laajuutta vastaava määrä tunteja tehtävien tekemiseen, itsensä kehittämiseen ja tämän prosessin dokumentointiin oppimispäiväkirjamuodossa.

Evaluation scale

0 - 5

Assessment criteria, excellent (5)

Opiskelija käyttää asianmukaisesti keskeisiä kurssin aihepiirin käsitteitä ja osaa nimetä ammattialansa perustiedot. Opiskelija toimii tarkoituksenmukaisesti, joskin toiminta voi olla vielä epävarmaa ja vaatii ohjausta. Opiskelija käyttää toiminnassaan tarkoituksenmukaisesti ammattialansa tekniikoita ja malleja sekä toimii ammattieettisten periaatteiden mukaisesti.

Assessment criteria, good (3)

Opiskelija käyttää johdonmukaisesti ammattialansa käsitteitä ja osaa nimetä, kuvailla ja perustella ammattialansa perustiedot. Opiskelija valitsee tarkoituksenmukaisia toimintatapoja hankkimansa tiedon ja ohjeistuksen perusteella sekä soveltaa tarkoituksenmukaisesti ammattialansa toimintaan soveltuvia tekniikoita ja malleja. Opiskelija arvioi ja reflektoida omaa osaamistaan ja osaa perustella toimintansa ammattieettisten periaatteiden mukaisesti.

Assessment criteria, satisfactory (1)

Opiskelija käyttää asiantuntevasti ja laaja-alaisesti ammattialansa käsitteitä sekä yhdistää niitä kokonaisuuksiksi. Opiskelija osaa analysoida, reflektoida ja arvioida kriittisesti omaa osaamistaan ja ammattialansa toimintatapoja hankkimansa tiedon avulla. Opiskelija osaa myös valita ja arvioida kriittisesti ammattialansa tekniikoita ja malleja sekä käyttää niitä toiminnassaan ja soveltaa kriittisesti ammattieettisiä periaatteita toiminnassaan.

Assessment criteria, excellent (5)

Opiskelija todistaa vahvaa näyttöä taidoista ja niiden kehittymisestä oppimispäiväkirjassaan. Päiväkirja on virheetöntä asiatyyliä ja sisälllöltään argumentoiva sekä oivaltava. Oppimispäiväkirjaan on todistettavasti lisätty viikoittain merkintä, jonka sisällön laajuus ja taso vastaa työmäärältään kurssin ajankäytön mukaista työtä. Lähdeaineisto on kriittisesti arvioitu ja punnittu.

Toteutuksen arviointikriteerit, hyvä (3-4)

Opiskelija reflektoi tai analysoi taitojensa kehittymistä oppimispäiväkirjassaan. Päiväkirjan asiasisältö on huoliteltua ja selkeää tai sujuvaa ja lähes virheetöntä asiatyyliä. Työtä on tehty välillä joko toinen viikko tai useimpina viikkoina. Lähdeaineiston käyttö on systemaattista, lukijalle selkeää ja lähdeaineisto on monipuolista sekä tarkoituksenmukaista.

Assessment criteria, satisfactory (1)

Opiskelija listaa tai soveltaa perustaitoja oppimispäiväkirjassaan. Päiväkirjan asiasisältö on jäsentymätöntä tai tyylillisesti epätasaista. Oppimispäiväkirjaa ei ole päivitetty asianmukaisesti viikoittain vaan merkittävin osa työstä on tehty viikossa. Lähdeluettelo on laadittu, mutta runkotekstin ja lähteiden yhteys on vähäinen tai olematon.

Prerequisites

Git-, Python- ja Jupyter Notebook -osaaminen oltava vähintään perusteiden tasolla.

en
Enrollment

01.08.2023 - 30.09.2023

Timing

01.08.2023 - 31.12.2023

Number of ECTS credits allocated

5 op

Mode of delivery

Contact teaching

Unit

Teknologia

Teaching languages
  • Finnish
Degree programmes
  • Bachelor’s Degree in Information and Communication Technology
Teachers
  • Mikko Romppainen
Groups
  • TTV22SAI
    TTV22SAI

Objective

Opintojakson suoritettuaan opiskelija hallitsee tyypillisimpiä koneoppimistekniikoita ja ymmärtää niiden hyödyntämismahdollisuudet. Teoriaymmärryksen lisäksi opiskelija kykenee soveltamaan oppimiaan menetelmiä käytännön ongelmien ratkaisemiseen sekä omaa perusnäkemyksen koneoppimis- ja tekoälysovellusten toteuttamiseen liittyvistä hyvistä käytänteistä.

Content

- Johdatus koneoppimiseen
- Työnkulun tyypilliset vaiheet
- Datan käsittelyn alkeet (Z-score, Box-Cox, jne.)
- Mallin suorituskyvyn mittaus (MSE, F1 jne.)
- Useita eri algoritmeja, kuten:
- Naive Bayes
- Päätöspuu
- k-NN
- k-Means
- Linear Regression (Hill Climbing ja/tai Gradient Descent)

Evaluation scale

0 - 5

Assessment criteria, excellent (5)

Opiskelija käyttää asianmukaisesti keskeisiä kurssin aihepiirin käsitteitä ja osaa nimetä ammattialansa perustiedot. Opiskelija toimii tarkoituksenmukaisesti, joskin toiminta voi olla vielä epävarmaa ja vaatii ohjausta. Opiskelija käyttää toiminnassaan tarkoituksenmukaisesti ammattialansa tekniikoita ja malleja sekä toimii ammattieettisten periaatteiden mukaisesti.

Assessment criteria, good (3)

Opiskelija käyttää johdonmukaisesti ammattialansa käsitteitä ja osaa nimetä, kuvailla ja perustella ammattialansa perustiedot. Opiskelija valitsee tarkoituksenmukaisia toimintatapoja hankkimansa tiedon ja ohjeistuksen perusteella sekä soveltaa tarkoituksenmukaisesti ammattialansa toimintaan soveltuvia tekniikoita ja malleja. Opiskelija arvioi ja reflektoida omaa osaamistaan ja osaa perustella toimintansa ammattieettisten periaatteiden mukaisesti.

Assessment criteria, satisfactory (1)

Opiskelija käyttää asiantuntevasti ja laaja-alaisesti ammattialansa käsitteitä sekä yhdistää niitä kokonaisuuksiksi. Opiskelija osaa analysoida, reflektoida ja arvioida kriittisesti omaa osaamistaan ja ammattialansa toimintatapoja hankkimansa tiedon avulla. Opiskelija osaa myös valita ja arvioida kriittisesti ammattialansa tekniikoita ja malleja sekä käyttää niitä toiminnassaan ja soveltaa kriittisesti ammattieettisiä periaatteita toiminnassaan.

Prerequisites

Git-, Python- ja Jupyter Notebook -osaaminen oltava vähintään perusteiden tasolla.

en
Enrollment

01.08.2023 - 30.09.2023

Timing

01.08.2023 - 31.12.2023

Number of ECTS credits allocated

5 op

Mode of delivery

Contact teaching

Unit

Teknologia

Teaching languages
  • Finnish
Degree programmes
  • Bachelor’s Degree in Information and Communication Technology
Teachers
  • Jussi Ala-Hiiro
Groups
  • TTM22SAI
    TTM22SAI

Objective

Opintojakson suoritettuaan opiskelija hallitsee tyypillisimpiä koneoppimistekniikoita ja ymmärtää niiden hyödyntämismahdollisuudet. Teoriaymmärryksen lisäksi opiskelija kykenee soveltamaan oppimiaan menetelmiä käytännön ongelmien ratkaisemiseen sekä omaa perusnäkemyksen koneoppimis- ja tekoälysovellusten toteuttamiseen liittyvistä hyvistä käytänteistä.

Content

- Johdatus koneoppimiseen
- Työnkulun tyypilliset vaiheet
- Datan käsittelyn alkeet (Z-score, Box-Cox, jne.)
- Mallin suorituskyvyn mittaus (MSE, F1 jne.)
- Useita eri algoritmeja, kuten:
- Naive Bayes
- Päätöspuu
- k-NN
- k-Means
- Linear Regression (Hill Climbing ja/tai Gradient Descent)

Evaluation scale

0 - 5

Assessment criteria, excellent (5)

Opiskelija käyttää asianmukaisesti keskeisiä kurssin aihepiirin käsitteitä ja osaa nimetä ammattialansa perustiedot. Opiskelija toimii tarkoituksenmukaisesti, joskin toiminta voi olla vielä epävarmaa ja vaatii ohjausta. Opiskelija käyttää toiminnassaan tarkoituksenmukaisesti ammattialansa tekniikoita ja malleja sekä toimii ammattieettisten periaatteiden mukaisesti.

Assessment criteria, good (3)

Opiskelija käyttää johdonmukaisesti ammattialansa käsitteitä ja osaa nimetä, kuvailla ja perustella ammattialansa perustiedot. Opiskelija valitsee tarkoituksenmukaisia toimintatapoja hankkimansa tiedon ja ohjeistuksen perusteella sekä soveltaa tarkoituksenmukaisesti ammattialansa toimintaan soveltuvia tekniikoita ja malleja. Opiskelija arvioi ja reflektoida omaa osaamistaan ja osaa perustella toimintansa ammattieettisten periaatteiden mukaisesti.

Assessment criteria, satisfactory (1)

Opiskelija käyttää asiantuntevasti ja laaja-alaisesti ammattialansa käsitteitä sekä yhdistää niitä kokonaisuuksiksi. Opiskelija osaa analysoida, reflektoida ja arvioida kriittisesti omaa osaamistaan ja ammattialansa toimintatapoja hankkimansa tiedon avulla. Opiskelija osaa myös valita ja arvioida kriittisesti ammattialansa tekniikoita ja malleja sekä käyttää niitä toiminnassaan ja soveltaa kriittisesti ammattieettisiä periaatteita toiminnassaan.

Prerequisites

Git-, Python- ja Jupyter Notebook -osaaminen oltava vähintään perusteiden tasolla.