Siirry suoraan sisältöön

Data-alustatLaajuus (3 op)

Tunnus: TT00CC63

Laajuus

3 op

Opetuskieli

  • suomi

Osaamistavoitteet

Opiskelija ymmärtää data-alustojen tarpeen liiketoiminnan menestyksen lähtökohdista. Opiskelija osaa hyödyntää ja kehittää nykyaikaisia data-alustoja ja automatisoida datan käsittelyn ja data-analyysin työnkulkuja (MLOps, DataOps) tehostaakseen työvaiheita ja parantaakseen analyysin laatua.

Sisältö

Data-alustojen kehittämisen parhaita käytäntöjä, datan käsittelyn työvaiheiden automatisointia ja data-alustojen arkkitehtuurin suunnittelua.

Arviointikriteerit, kiitettävä (5)

Opiskelija ymmärtää data-alustan merkityksen liiketoiminnalle ja osaa toteuttaa liiketoimintaa tukevan data-alustan. Opiskelija osaa automatisoida datan käsittelyn työvaiheita ja jalostaa raakadatasta monipuolisen data-alustan.

Arviointikriteerit, hyvä (3)

Opiskelija ymmärtää data-alustan merkityksen, työvaiheiden automatisoinnin ja osaa kehittää yrityksen tarpeisiin soveltuvan data-alustan.

Arviointikriteerit, tyydyttävä (1)

Opiskelija ymmärtää data-alustan merkityksen liiketoiminnalle ja osaa avustettuna kehittää yksinkertaisen data-alustan.

fi
Ilmoittautumisaika

01.08.2023 - 30.09.2023

Ajoitus

01.08.2023 - 31.12.2023

Opintopistemäärä

3 op

Toteutustapa

Lähiopetus

Yksikkö

Teknologia

Opetuskielet
  • Suomi
Koulutus
  • Tieto- ja viestintätekniikan koulutus
Opettaja
  • Ali Hosseini
  • Jani Sourander
Ryhmät
  • TTV22SAI
    TTV22SAI

Tavoitteet

Opiskelija ymmärtää data-alustojen tarpeen liiketoiminnan menestyksen lähtökohdista. Opiskelija osaa hyödyntää ja kehittää nykyaikaisia data-alustoja ja automatisoida datan käsittelyn ja data-analyysin työnkulkuja (MLOps, DataOps) tehostaakseen työvaiheita ja parantaakseen analyysin laatua.

Sisältö

Data-alustojen kehittämisen parhaita käytäntöjä, datan käsittelyn työvaiheiden automatisointia ja data-alustojen arkkitehtuurin suunnittelua.

Arviointiasteikko

0 - 5

Arviointikriteerit, kiitettävä (5)

Opiskelija ymmärtää data-alustan merkityksen liiketoiminnalle ja osaa avustettuna kehittää yksinkertaisen data-alustan.

Arviointikriteerit, hyvä (3)

Opiskelija ymmärtää data-alustan merkityksen, työvaiheiden automatisoinnin ja osaa kehittää yrityksen tarpeisiin soveltuvan data-alustan.

Arviointikriteerit, tyydyttävä (1)

Opiskelija ymmärtää data-alustan merkityksen liiketoiminnalle ja osaa toteuttaa liiketoimintaa tukevan data-alustan. Opiskelija osaa automatisoida datan käsittelyn työvaiheita ja jalostaa raakadatasta monipuolisen data-alustan.

fi
Ilmoittautumisaika

01.08.2023 - 30.09.2023

Ajoitus

01.08.2023 - 31.12.2023

Opintopistemäärä

3 op

Toteutustapa

Lähiopetus

Yksikkö

Teknologia

Opetuskielet
  • Suomi
Koulutus
  • Tieto- ja viestintätekniikan koulutus
Opettaja
  • Ali Hosseini
  • Jani Sourander
Ryhmät
  • TTM22SAI
    TTM22SAI

Tavoitteet

Opiskelija ymmärtää data-alustojen tarpeen liiketoiminnan menestyksen lähtökohdista. Opiskelija osaa hyödyntää ja kehittää nykyaikaisia data-alustoja ja automatisoida datan käsittelyn ja data-analyysin työnkulkuja (MLOps, DataOps) tehostaakseen työvaiheita ja parantaakseen analyysin laatua.

Sisältö

Data-alustojen kehittämisen parhaita käytäntöjä, datan käsittelyn työvaiheiden automatisointia ja data-alustojen arkkitehtuurin suunnittelua.

Arviointiasteikko

0 - 5

Arviointikriteerit, kiitettävä (5)

Opiskelija ymmärtää data-alustan merkityksen liiketoiminnalle ja osaa avustettuna kehittää yksinkertaisen data-alustan.

Arviointikriteerit, hyvä (3)

Opiskelija ymmärtää data-alustan merkityksen, työvaiheiden automatisoinnin ja osaa kehittää yrityksen tarpeisiin soveltuvan data-alustan.

Arviointikriteerit, tyydyttävä (1)

Opiskelija ymmärtää data-alustan merkityksen liiketoiminnalle ja osaa toteuttaa liiketoimintaa tukevan data-alustan. Opiskelija osaa automatisoida datan käsittelyn työvaiheita ja jalostaa raakadatasta monipuolisen data-alustan.