Deep learning 1Laajuus (5 cr)
Code: TT00CC66
Credits
5 op
Teaching language
- Finnish
Objective
Opiskelija ymmärtää syväoppimisen ja neuroverkkojen perusteet ja niiden opettamiseen liittyvät rajoitukset ja mahdollisuudet. Opiskelija osaa soveltaa syväoppimisessa käytettäviä menetelmiä Pytorch ympäristössä.
Content
- Keinotekoiset neuronit ja neuroverkot
- Syväoppiminen neuroverkoilla
- Neuroverkkojen opettaminen
- Opetettujen neuroverkkojen käyttö
- Neuroverkkojen hyperparametrit
- Pytorch ympäristön käyttö
- CNN neuroverkot (Convolutional Neural Networks)
- RNN neuroverkot (Recurrent Neural Networks)
- Luonnollisen kielen käsittelyn (NLP) perusteet
Enrollment
01.11.2024 - 26.01.2025
Timing
01.01.2025 - 31.07.2025
Number of ECTS credits allocated
5 op
Virtual portion
5 op
Mode of delivery
Distance learning
Unit
Teknologia
Teaching languages
- Finnish
Seats
0 - 100
Degree programmes
- Bachelor’s Degree in Information and Communication Technology
Teachers
- Pekka Huttunen
Groups
-
TTM23SAITTM23SAI
Objective
Opiskelija ymmärtää syväoppimisen ja neuroverkkojen perusteet ja niiden opettamiseen liittyvät rajoitukset ja mahdollisuudet. Opiskelija osaa soveltaa syväoppimisessa käytettäviä menetelmiä Pytorch ympäristössä.
Content
- Keinotekoiset neuronit ja neuroverkot
- Syväoppiminen neuroverkoilla
- Neuroverkkojen opettaminen
- Opetettujen neuroverkkojen käyttö
- Neuroverkkojen hyperparametrit
- Pytorch ympäristön käyttö
- CNN neuroverkot (Convolutional Neural Networks)
- RNN neuroverkot (Recurrent Neural Networks)
- Luonnollisen kielen käsittelyn (NLP) perusteet
Location and time
Opintojakso järjestetään verkkototeutuksena kevätlukukaudella, lukujärjestyksen mukaisesti.
Aloitusluento viikolla 2
Q&A luennot n. 2 viikon välein klo 17 jälkeen
Suositeltu suoritusaika jakso 3 (1.1.-16.3.2025)
Sallittu suoritusaika 1.1.-30.4.2025
Teaching methods
Kurssin sisältö ja ohjeistus käydään lävitse aloitusluennolla (n. 2h), joka on katsottavissa myös tallenteena myöhemmin. Kurssilla ei ole erillisiä luentoja, vaan kurssin luentomateriaalit on saatavilla videoina. Kurssin materiaalit ja tehtävät ovat Moodlen Reppu-ympäristössä, luentovideot Youtubessa.
Kurssilla ei ole erillistä tenttiä, vaan kurssin suoritus perustuu kurssin harjoitusten palauttamiseen. Harjoitukset tehdään jupyterlab -ympäristössä. Kurssin läpäisy edellyttää kurssin kaikkien tehtävien palauttamisen.
Kurssin aikana järjestetään erillisiä kysy-vastaa -sessioita, joissa voi kysyä epäselvistä asioista ja saada apua tehtävien kanssa. Kurssin keskustelu tapahtuu kurssin discord -kanavalla.
Exam schedules
Ei sisällä tenttiä. Harjoitustehtävien palautus 30.4.2025 mennessä.
Student workload
Opintojakson laajuus on 5op, mikä vastaa n. 135 tuntia opiskelijan työtä.
Evaluation scale
0 - 5
Assessment criteria, excellent (5)
Arvosanaan 5 vaaditaan n. 90% kurssin harjoitusten pisteistä. Tämä tarkoittaa käytännössä, että kaikki palautettu koodi toimii ja harjoitusten pohdinta-osiot on tehty kiitettävästi.
Toteutuksen arviointikriteerit, hyvä (3-4)
Arvosanaan 3-4 vaaditaan kaikkien tehtävien palautus ja n. 70% kurssin harjoitusten pisteistä. Palautetut tehtävät toimivat ja harjoitusten pohdinta-osiot on tehty.
Assessment criteria, satisfactory (1)
Arvosanaan 1 vaaditaan kaikkien tehtävien palautus ja 50% kurssin pisteistä. Lisäksi palautetuista kurssin harjoituksista on käytävä ilmi, että opiskelija osaa ottaa käyttöön Pytorch -ympäristön, ladata siihen valmiiksi opetetun mallin ja ajaa sitä.
Prerequisites
Datatieteen matematiikka 1 (tilastotieteen peruskäsitteet)
Datatieteen matematiikka 2 (matriisialgebra)
Python-ohjelmointi
Enrollment
01.12.2023 - 31.01.2024
Timing
01.01.2024 - 16.04.2024
Number of ECTS credits allocated
5 op
Mode of delivery
Contact teaching
Unit
Teknologia
Teaching languages
- Finnish
Degree programmes
- Bachelor’s Degree in Information and Communication Technology
Teachers
- Pekka Huttunen
Groups
-
TTM22SAITTM22SAI
Objective
Opiskelija ymmärtää syväoppimisen ja neuroverkkojen perusteet ja niiden opettamiseen liittyvät rajoitukset ja mahdollisuudet. Opiskelija osaa soveltaa syväoppimisessa käytettäviä menetelmiä Pytorch ympäristössä.
Content
- Keinotekoiset neuronit ja neuroverkot
- Syväoppiminen neuroverkoilla
- Neuroverkkojen opettaminen
- Opetettujen neuroverkkojen käyttö
- Neuroverkkojen hyperparametrit
- Pytorch ympäristön käyttö
- CNN neuroverkot (Convolutional Neural Networks)
- RNN neuroverkot (Recurrent Neural Networks)
- Luonnollisen kielen käsittelyn (NLP) perusteet
Evaluation scale
0 - 5
Prerequisites
Datatieteen matematiikka 1 (tilastotieteen peruskäsitteet)
Datatieteen matematiikka 2 (matriisialgebra)
Python-ohjelmointi
Enrollment
01.12.2023 - 31.01.2024
Timing
01.01.2024 - 17.03.2024
Number of ECTS credits allocated
5 op
Mode of delivery
Contact teaching
Unit
Teknologia
Teaching languages
- Finnish
Degree programmes
- Bachelor’s Degree in Information and Communication Technology
Teachers
- Pekka Huttunen
Groups
-
TTV22SAITTV22SAI
Objective
Opiskelija ymmärtää syväoppimisen ja neuroverkkojen perusteet ja niiden opettamiseen liittyvät rajoitukset ja mahdollisuudet. Opiskelija osaa soveltaa syväoppimisessa käytettäviä menetelmiä Pytorch ympäristössä.
Content
- Keinotekoiset neuronit ja neuroverkot
- Syväoppiminen neuroverkoilla
- Neuroverkkojen opettaminen
- Opetettujen neuroverkkojen käyttö
- Neuroverkkojen hyperparametrit
- Pytorch ympäristön käyttö
- CNN neuroverkot (Convolutional Neural Networks)
- RNN neuroverkot (Recurrent Neural Networks)
- Luonnollisen kielen käsittelyn (NLP) perusteet
Evaluation scale
0 - 5
Prerequisites
Datatieteen matematiikka 1 (tilastotieteen peruskäsitteet)
Datatieteen matematiikka 2 (matriisialgebra)
Python-ohjelmointi