Skip to main content

Deep learning 1Laajuus (5 cr)

Code: TT00CC66

Credits

5 op

Teaching language

  • Finnish

Objective

Opiskelija ymmärtää syväoppimisen ja neuroverkkojen perusteet ja niiden opettamiseen liittyvät rajoitukset ja mahdollisuudet. Opiskelija osaa soveltaa syväoppimisessa käytettäviä menetelmiä Pytorch ympäristössä.

Content

- Keinotekoiset neuronit ja neuroverkot
- Syväoppiminen neuroverkoilla
- Neuroverkkojen opettaminen
- Opetettujen neuroverkkojen käyttö
- Neuroverkkojen hyperparametrit
- Pytorch ympäristön käyttö
- CNN neuroverkot (Convolutional Neural Networks)
- RNN neuroverkot (Recurrent Neural Networks)
- Luonnollisen kielen käsittelyn (NLP) perusteet

en
Enrollment

01.11.2024 - 26.01.2025

Timing

01.01.2025 - 31.07.2025

Number of ECTS credits allocated

5 op

Virtual portion

5 op

Mode of delivery

Distance learning

Unit

Teknologia

Teaching languages
  • Finnish
Seats

0 - 100

Degree programmes
  • Bachelor’s Degree in Information and Communication Technology
Teachers
  • Pekka Huttunen
Groups
  • TTM23SAI
    TTM23SAI

Objective

Opiskelija ymmärtää syväoppimisen ja neuroverkkojen perusteet ja niiden opettamiseen liittyvät rajoitukset ja mahdollisuudet. Opiskelija osaa soveltaa syväoppimisessa käytettäviä menetelmiä Pytorch ympäristössä.

Content

- Keinotekoiset neuronit ja neuroverkot
- Syväoppiminen neuroverkoilla
- Neuroverkkojen opettaminen
- Opetettujen neuroverkkojen käyttö
- Neuroverkkojen hyperparametrit
- Pytorch ympäristön käyttö
- CNN neuroverkot (Convolutional Neural Networks)
- RNN neuroverkot (Recurrent Neural Networks)
- Luonnollisen kielen käsittelyn (NLP) perusteet

Location and time

Opintojakso järjestetään verkkototeutuksena kevätlukukaudella, lukujärjestyksen mukaisesti.

Aloitusluento viikolla 2
Q&A luennot n. 2 viikon välein klo 17 jälkeen
Suositeltu suoritusaika jakso 3 (1.1.-16.3.2025)
Sallittu suoritusaika 1.1.-30.4.2025

Teaching methods

Kurssin sisältö ja ohjeistus käydään lävitse aloitusluennolla (n. 2h), joka on katsottavissa myös tallenteena myöhemmin. Kurssilla ei ole erillisiä luentoja, vaan kurssin luentomateriaalit on saatavilla videoina. Kurssin materiaalit ja tehtävät ovat Moodlen Reppu-ympäristössä, luentovideot Youtubessa.

Kurssilla ei ole erillistä tenttiä, vaan kurssin suoritus perustuu kurssin harjoitusten palauttamiseen. Harjoitukset tehdään jupyterlab -ympäristössä. Kurssin läpäisy edellyttää kurssin kaikkien tehtävien palauttamisen.

Kurssin aikana järjestetään erillisiä kysy-vastaa -sessioita, joissa voi kysyä epäselvistä asioista ja saada apua tehtävien kanssa. Kurssin keskustelu tapahtuu kurssin discord -kanavalla.

Exam schedules

Ei sisällä tenttiä. Harjoitustehtävien palautus 30.4.2025 mennessä.

Student workload

Opintojakson laajuus on 5op, mikä vastaa n. 135 tuntia opiskelijan työtä.

Evaluation scale

0 - 5

Assessment criteria, excellent (5)

Arvosanaan 5 vaaditaan n. 90% kurssin harjoitusten pisteistä. Tämä tarkoittaa käytännössä, että kaikki palautettu koodi toimii ja harjoitusten pohdinta-osiot on tehty kiitettävästi.

Toteutuksen arviointikriteerit, hyvä (3-4)

Arvosanaan 3-4 vaaditaan kaikkien tehtävien palautus ja n. 70% kurssin harjoitusten pisteistä. Palautetut tehtävät toimivat ja harjoitusten pohdinta-osiot on tehty.

Assessment criteria, satisfactory (1)

Arvosanaan 1 vaaditaan kaikkien tehtävien palautus ja 50% kurssin pisteistä. Lisäksi palautetuista kurssin harjoituksista on käytävä ilmi, että opiskelija osaa ottaa käyttöön Pytorch -ympäristön, ladata siihen valmiiksi opetetun mallin ja ajaa sitä.

Prerequisites

Datatieteen matematiikka 1 (tilastotieteen peruskäsitteet)
Datatieteen matematiikka 2 (matriisialgebra)
Python-ohjelmointi

en
Enrollment

01.12.2023 - 31.01.2024

Timing

01.01.2024 - 16.04.2024

Number of ECTS credits allocated

5 op

Mode of delivery

Contact teaching

Unit

Teknologia

Teaching languages
  • Finnish
Degree programmes
  • Bachelor’s Degree in Information and Communication Technology
Teachers
  • Pekka Huttunen
Groups
  • TTM22SAI
    TTM22SAI

Objective

Opiskelija ymmärtää syväoppimisen ja neuroverkkojen perusteet ja niiden opettamiseen liittyvät rajoitukset ja mahdollisuudet. Opiskelija osaa soveltaa syväoppimisessa käytettäviä menetelmiä Pytorch ympäristössä.

Content

- Keinotekoiset neuronit ja neuroverkot
- Syväoppiminen neuroverkoilla
- Neuroverkkojen opettaminen
- Opetettujen neuroverkkojen käyttö
- Neuroverkkojen hyperparametrit
- Pytorch ympäristön käyttö
- CNN neuroverkot (Convolutional Neural Networks)
- RNN neuroverkot (Recurrent Neural Networks)
- Luonnollisen kielen käsittelyn (NLP) perusteet

Evaluation scale

0 - 5

Prerequisites

Datatieteen matematiikka 1 (tilastotieteen peruskäsitteet)
Datatieteen matematiikka 2 (matriisialgebra)
Python-ohjelmointi

en
Enrollment

01.12.2023 - 31.01.2024

Timing

01.01.2024 - 17.03.2024

Number of ECTS credits allocated

5 op

Mode of delivery

Contact teaching

Unit

Teknologia

Teaching languages
  • Finnish
Degree programmes
  • Bachelor’s Degree in Information and Communication Technology
Teachers
  • Pekka Huttunen
Groups
  • TTV22SAI
    TTV22SAI

Objective

Opiskelija ymmärtää syväoppimisen ja neuroverkkojen perusteet ja niiden opettamiseen liittyvät rajoitukset ja mahdollisuudet. Opiskelija osaa soveltaa syväoppimisessa käytettäviä menetelmiä Pytorch ympäristössä.

Content

- Keinotekoiset neuronit ja neuroverkot
- Syväoppiminen neuroverkoilla
- Neuroverkkojen opettaminen
- Opetettujen neuroverkkojen käyttö
- Neuroverkkojen hyperparametrit
- Pytorch ympäristön käyttö
- CNN neuroverkot (Convolutional Neural Networks)
- RNN neuroverkot (Recurrent Neural Networks)
- Luonnollisen kielen käsittelyn (NLP) perusteet

Evaluation scale

0 - 5

Prerequisites

Datatieteen matematiikka 1 (tilastotieteen peruskäsitteet)
Datatieteen matematiikka 2 (matriisialgebra)
Python-ohjelmointi