Skip to main content

Artificial Intelligence in Games (3 cr)

Code: TT00CB18-3004

General information


Enrollment
01.12.2023 - 31.01.2024
Registration for the implementation has ended.
Timing
01.01.2024 - 31.07.2024
Implementation has ended.
Number of ECTS credits allocated
3 cr
Local portion
3 cr
Mode of delivery
Contact learning
Unit
Teknologia
Teaching languages
Finnish
Degree programmes
Bachelor’s Degree in Business Information Technology
Teachers
Mikko Romppainen
Groups
TTK22SPORaahe
TTK22SPORaahe
TTK22SPRaahe
TTK22SPRaahe
Course
TT00CB18

Realization has 7 reservations. Total duration of reservations is 50 h 30 min.

Time Topic Location
Mon 08.04.2024 time 08:15 - 16:00
(7 h 45 min)
Itsenäistä työskentelyä_Game Programming III_Artificial Intelligence in Games
Raahe_Lybe_1_ATK Raahe_Lybe_1_ATK
Mon 15.04.2024 time 08:15 - 16:00
(7 h 45 min)
Itsenäistä työskentelyä_Game Programming III_Artificial Intelligence in Games
Raahe_Lybe_1_ATK Raahe_Lybe_1_ATK
Mon 22.04.2024 time 08:15 - 16:00
(7 h 45 min)
Itsenäistä työskentelyä_Game Programming III_Artificial Intelligence in Games
Raahe_Lybe_1_ATK Raahe_Lybe_1_ATK
Mon 29.04.2024 time 08:15 - 16:00
(7 h 45 min)
Itsenäistä työskentelyä_Game Programming III_Artificial Intelligence in Games
Raahe_Lybe_1_ATK Raahe_Lybe_1_ATK
Mon 06.05.2024 time 10:00 - 15:00
(5 h 0 min)
Itsenäistä työskentelyä_Game Programming III_Artificial Intelligence in Games
Raahe_Lybe_1_ATK Raahe_Lybe_1_ATK
Mon 13.05.2024 time 08:15 - 16:00
(7 h 45 min)
Itsenäistä työskentelyä_Game Programming III_Artificial Intelligence in Games
Raahe_Lybe_1_ATK Raahe_Lybe_1_ATK
Mon 20.05.2024 time 08:15 - 15:00
(6 h 45 min)
Itsenäistä työskentelyä_Game Programming III_Artificial Intelligence in Games
Raahe_Lybe_1_ATK Raahe_Lybe_1_ATK
Changes to reservations may be possible.

Objective

Students will have basic knowledge of different AI techniques used in games. Students will be able to select and implement specific AI techniques required in a game.

Content

Introduction to game AI
Finite state machines
Path finding
Game genre specific AI techniques
Learning AI
Distributed AI, Team AI and crowd techniques

Evaluation scale

0 - 5

Assessment criteria, excellent (5)

The students are able to apply their learning to different tasks in a variety of ways.

Assessment criteria, good (3)

The students are able to use the methods they learn during the course appropriately.

Assessment criteria, satisfactory (1)

The students know and are proficient in the basic concepts of the course.

Prerequisites

Data Structures and Algorithms

Go back to top of page