Skip to main content

Generative Adversial Networks (GAN) ja deep fake (5 cr)

Code: TT00CF28-3003

General information


Enrollment
10.02.2024 - 10.03.2024
Registration for the implementation has ended.
Timing
11.03.2024 - 26.04.2024
Implementation has ended.
Number of ECTS credits allocated
5 cr
Local portion
5 cr
Mode of delivery
Contact learning
Unit
Teknologia
Teaching languages
Finnish
Degree programmes
Bachelor’s Degree in Information and Communication Technology
Teachers
Tommi Kauppinen
Groups
TTV21SAI
TTV21SAI
Course
TT00CF28
No reservations found for realization TT00CF28-3003!

Objective

Generatiiviset kilpailevat verkostot (Generative Adversarial Networks, GAN) ovat kaiken nykyisen ”deep fake”-nimityksen mukaisen kuva- ja videomanipulaation taustalla. Tällä kurssilla opiskelijat pääsevät tutustumaan GAN-tekoälyyn sekä käytännön että teorian näkökulmasta. Kurssi on Moodlessa itsenäisesti tai ryhmässä suoritettava kurssi, ja se sisältää sekä koodausta että kirjallisia töitä. Alun aiheeseen tutustumisen jälkeen kurssilla koodataan kuvamanipulaattori, jolla voi tuottaa keinotekoisen kuvan, joka muistuttaa täysin aitoa. Lisäksi kurssilla analysoidaan manipuloituja kuvia ja pyritään erottamaan ne aidoista. Kurssin aikana tehdyistä löydöksistä kirjoitetaan loppuraportti. Kurssi arvioidaan arvosanalla 1-5.

Content

Kurssilla tehdään alkuessee ja tutustutaan opetusmateriaaliin ja GAN-verkkoja käsitteleviin tieteellisiin julkaisuihin. Kurssilla ohjelmoidaan kaksi GAN-koodia, joista toinen on täydennettävä itse ja toinen tehdään alusta saakka. Lopuksi kirjoitetaan loppuraportti kurssin aikana tehdyistä havainnoista.

Evaluation scale

0 - 5

Assessment criteria, excellent (5)

Loppuraportti on selkeä ja osoittaa erinomaista ymmärrystä sekä GAN-verkkojen teoriasta että koodaamisesta. Deep fake -tunnistamisesta tehdyt havainnot ovat oikeat ja täsmällisesti selitetty.

Assessment criteria, good (3)

Loppuraportti on kohtuullisen selkeä ja osoittaa hyvää ymmärrystä sekä GAN-verkkojen teoriasta että koodaamisesta. Deep fake -tunnistamisesta tehdyt havainnot ovat jossain määrin oikeita ja ymmärrettävästi selitetty.

Assessment criteria, satisfactory (1)

Loppuraportti on ymmärrettävä ja osoittaa riittävää ymmärrystä sekä GAN-verkkojen teoriasta että koodaamisesta. Deep fake -tunnistamisesta tehdyt havainnot ovat välillä oikeita ja jossain määrin selitetty.

Prerequisites

Kurssilla tarvitaan riittävä ymmärrys tekoälystä, joten se on sopiva 3. ja 4. vuosikurssin opiskelijoille.

Go back to top of page