Skip to main content

Advanced Methods of Data Processing (5 cr)

Code: TT00CC57-3005

General information


Enrollment
30.12.2024 - 26.01.2025
Registration for the implementation has ended.
Timing
01.01.2025 - 31.07.2025
Implementation is running.
Number of ECTS credits allocated
5 cr
Local portion
5 cr
Mode of delivery
Contact learning
Unit
Teknologia
Teaching languages
Finnish
Degree programmes
Bachelor’s Degree in Information and Communication Technology
Teachers
Pekka Huttunen
Groups
TTV23SRAA
TTV23SRAA
Course
TT00CC57

Realization has 7 reservations. Total duration of reservations is 7 h 30 min.

Time Topic Location
Thu 09.01.2025 time 12:45 - 14:15
(1 h 30 min)
Datan käsittelyn kehittyneet menetelmät TT00CC57-3005
Teams
Mon 13.01.2025 time 12:45 - 13:45
(1 h 0 min)
Q&A_Datan käsittelyn kehittyneet menetelmät TT00CC57-3005
Teams
Mon 20.01.2025 time 12:45 - 13:45
(1 h 0 min)
Q&A_Datan käsittelyn kehittyneet menetelmät TT00CC57-3005
Teams
Mon 27.01.2025 time 12:45 - 13:45
(1 h 0 min)
Q&A_Datan käsittelyn kehittyneet menetelmät TT00CC57-3005
Teams
Mon 10.02.2025 time 12:45 - 13:45
(1 h 0 min)
Q&A_Datan käsittelyn kehittyneet menetelmät TT00CC57-3005
Teams
Mon 24.02.2025 time 12:45 - 13:45
(1 h 0 min)
Q&A_Datan käsittelyn kehittyneet menetelmät TT00CC57-3005
Teams
Mon 10.03.2025 time 12:45 - 13:45
(1 h 0 min)
Q&A_Datan käsittelyn kehittyneet menetelmät TT00CC57-3005
Teams
Changes to reservations may be possible.

Objective

The goal of the course is to get to know the advanced methods of data processing, using the python libraries NumPy, Pandas, and Matplotlib. The course covers the calculation of data characteristics, data distributions, data visualization and the use of regular expressions (regex). The course also introduces data clustering.

Using these methods, the course creates a data processing chain (pipeline), which is used to perform feature engineering from the data.

Evaluation scale

0 - 5

Assessment criteria, excellent (5)

The course consists of several exercises. At least 92% of the course's practice points must be accumulated for a grade of 5.

Assessment criteria, satisfactory (1)

The course consists of several exercises. At least 50% of the course's practice points must be accumulated for grade 1.

Prerequisites

Python programming
Modern software development
Algebra

Go back to top of page