Business Research and Development Methods II (5op)
Toteutuksen tunnus: LY00BJ57-3014
Toteutuksen perustiedot
- Ilmoittautumisaika
- 01.09.2025 - 15.03.2026
- Ilmoittautuminen toteutukselle on käynnissä.
- Ajoitus
- 16.03.2026 - 31.05.2026
- Toteutus ei ole vielä alkanut.
- Opintopistemäärä
- 5 op
- Lähiosuus
- 5 op
- Toteutustapa
- Lähiopetus
- Yksikkö
- KAMK Master School
- Opetuskielet
- englanti
- Koulutus
- Master's Degree in International Business Management
- Opettajat
- Aki Kortelainen
- Outi Lundahl
- Ryhmät
-
MGB25SMGB25S
-
MGBE25SMGBE25S
-
LBY25SLBY25S
- Opintojakso
- LY00BJ57
Toteutuksella on 8 opetustapahtumaa joiden yhteenlaskettu kesto on 16 t 0 min.
| Aika | Aihe | Tila |
|---|---|---|
|
Ti 24.03.2026 klo 16:00 - 18:00 (2 t 0 min) |
Business Research and Development Methods II LY00BJ57-3014 |
Teams
|
|
Ti 31.03.2026 klo 16:00 - 18:00 (2 t 0 min) |
Business Research and Development Methods II LY00BJ57-3014 |
Teams
|
|
Ti 14.04.2026 klo 16:00 - 18:00 (2 t 0 min) |
Business Research and Development Methods II LY00BJ57-3014 |
Teams
|
|
To 23.04.2026 klo 16:00 - 18:00 (2 t 0 min) |
Business Research and Development Methods II LY00BJ57-3014 |
Teams
|
|
Ti 28.04.2026 klo 16:00 - 18:00 (2 t 0 min) |
Business Research and Development Methods II LY00BJ57-3014 |
Teams
|
|
Ti 05.05.2026 klo 16:00 - 18:00 (2 t 0 min) |
Business Research and Development Methods II LY00BJ57-3014 |
Teams
|
|
Ti 12.05.2026 klo 16:00 - 18:00 (2 t 0 min) |
Business Research and Development Methods II LY00BJ57-3014 |
Teams
|
|
To 21.05.2026 klo 16:00 - 18:00 (2 t 0 min) |
Business Research and Development Methods II LY00BJ57-3014 |
Teams
|
Arviointiasteikko
Hylätty/Hyväksytty
Sisällön jaksotus
Quantitative methods will be discussed in lectures during the time period of 24.3.-23.4, qualitative methods will be discussed in lectures 28.4.-26.5.
Tavoitteet
Student will learn the methods how to use, handle, analyze and interpret both qualitative and quantitative data. She/he will learn how to combine qualitative and quantitative data, i.e. use mixed methods/triangulation.
Toteutustavat
Lectures and online lectures
Suoritustavat
Lectures
Online lectures
Active participating
Group discussions
Course assigment
Sisältö
Qualitative data analyses
Quantitative data analyses
Aika ja paikka
The online lectures will take place during the time period of 24.3.-26.5.
Oppimateriaalit
Ilmoitetaan myöhemmin Repussa.
Opetusmenetelmät
8 online lectures which will recorded.
Attendance is not mandatory. However, there may be an additional assignment if you are not present during certain lectures.
The course also includes course work (both group and individual assignments).
Harjoittelu- ja työelämäyhteistyö
None.
Tenttien ajankohdat ja uusintamahdollisuudet
No exam.
Kansainvälisyys
None.
Toteutuksen valinnaiset suoritustavat
None.
Opiskelijan ajankäyttö ja kuormitus
The course requires approximately 135 hours of student work.
Lectures account for approximately 18 hours. The remaining 117 hours are dedicated to assessed course assignments and individual study.
Of these, approximately 58 hours will be dedicated to qualitative research, and 58 hours to quantitative research.
These figures are indicative, and the actual workload depends on the amount of time each student chooses to spend on their studies.
Arviointikriteerit, hyväksytty/hylätty
Pass:
Student knows the requirements of quantitative and qualitative data analyses and can apply different analysis methods in his/her research process. Students is able to collect and analyse both qualitative and quantitative data and further interpret the results in a critical way.
Arviointikriteeri, hyväksytty/hylätty
Pass
Student knows the requirements of quantitative and qualitative data analyses and can apply different analysis methods in his/her research process. Students is able to collect and analyse both qualitative and quantitative data and further interpret the results in a critical way.
Lisätiedot
Guidelines for the use of AI—including its possibilities and limitations—will be reviewed during the first session in relation to the course assignments (based on Arene's AI recommendations).
Failure to follow the given instructions may result in the rejection of the course. If this is the case only with a single assignment, the student will be required to redo the task to receive a passing grade.
As with all the courses, it is possible to apply for credit transfer or recognition of prior learning (RPL) for the course, including the opportunity to integrate prior experience through a process of learning validation.
For course assignments there will be two opportunities for retakes (3 attempts overall). If a student does not pass after 3 attempts, they will have to retake the course.