Siirry suoraan sisältöön

Business Research and Development Methods II (5op)

Toteutuksen tunnus: LY00BJ57-3014

Toteutuksen perustiedot


Ilmoittautumisaika
01.09.2025 - 15.03.2026
Ilmoittautuminen toteutukselle on käynnissä.
Ajoitus
16.03.2026 - 31.05.2026
Toteutus ei ole vielä alkanut.
Opintopistemäärä
5 op
Lähiosuus
5 op
Toteutustapa
Lähiopetus
Yksikkö
KAMK Master School
Opetuskielet
englanti
Koulutus
Master's Degree in International Business Management
Opettajat
Aki Kortelainen
Outi Lundahl
Ryhmät
MGB25S
MGB25S
MGBE25S
MGBE25S
LBY25S
LBY25S
Opintojakso
LY00BJ57

Toteutuksella on 8 opetustapahtumaa joiden yhteenlaskettu kesto on 16 t 0 min.

Aika Aihe Tila
Ti 24.03.2026 klo 16:00 - 18:00
(2 t 0 min)
Business Research and Development Methods II LY00BJ57-3014
Teams
Ti 31.03.2026 klo 16:00 - 18:00
(2 t 0 min)
Business Research and Development Methods II LY00BJ57-3014
Teams
Ti 14.04.2026 klo 16:00 - 18:00
(2 t 0 min)
Business Research and Development Methods II LY00BJ57-3014
Teams
To 23.04.2026 klo 16:00 - 18:00
(2 t 0 min)
Business Research and Development Methods II LY00BJ57-3014
Teams
Ti 28.04.2026 klo 16:00 - 18:00
(2 t 0 min)
Business Research and Development Methods II LY00BJ57-3014
Teams
Ti 05.05.2026 klo 16:00 - 18:00
(2 t 0 min)
Business Research and Development Methods II LY00BJ57-3014
Teams
Ti 12.05.2026 klo 16:00 - 18:00
(2 t 0 min)
Business Research and Development Methods II LY00BJ57-3014
Teams
To 21.05.2026 klo 16:00 - 18:00
(2 t 0 min)
Business Research and Development Methods II LY00BJ57-3014
Teams
Muutokset varauksiin voivat olla mahdollisia.

Arviointiasteikko

Hylätty/Hyväksytty

Sisällön jaksotus

Quantitative methods will be discussed in lectures during the time period of 24.3.-23.4, qualitative methods will be discussed in lectures 28.4.-26.5.

Tavoitteet

Student will learn the methods how to use, handle, analyze and interpret both qualitative and quantitative data. She/he will learn how to combine qualitative and quantitative data, i.e. use mixed methods/triangulation.

Toteutustavat

Lectures and online lectures

Suoritustavat

Lectures
Online lectures
Active participating
Group discussions
Course assigment

Sisältö

Qualitative data analyses
Quantitative data analyses

Aika ja paikka

The online lectures will take place during the time period of 24.3.-26.5.

Oppimateriaalit

Ilmoitetaan myöhemmin Repussa.

Opetusmenetelmät

8 online lectures which will recorded.
Attendance is not mandatory. However, there may be an additional assignment if you are not present during certain lectures.
The course also includes course work (both group and individual assignments).

Harjoittelu- ja työelämäyhteistyö

None.

Tenttien ajankohdat ja uusintamahdollisuudet

No exam.

Kansainvälisyys

None.

Toteutuksen valinnaiset suoritustavat

None.

Opiskelijan ajankäyttö ja kuormitus

The course requires approximately 135 hours of student work.
Lectures account for approximately 18 hours. The remaining 117 hours are dedicated to assessed course assignments and individual study.
Of these, approximately 58 hours will be dedicated to qualitative research, and 58 hours to quantitative research.
These figures are indicative, and the actual workload depends on the amount of time each student chooses to spend on their studies.

Arviointikriteerit, hyväksytty/hylätty

Pass:
Student knows the requirements of quantitative and qualitative data analyses and can apply different analysis methods in his/her research process. Students is able to collect and analyse both qualitative and quantitative data and further interpret the results in a critical way.

Arviointikriteeri, hyväksytty/hylätty

Pass
Student knows the requirements of quantitative and qualitative data analyses and can apply different analysis methods in his/her research process. Students is able to collect and analyse both qualitative and quantitative data and further interpret the results in a critical way.

Lisätiedot

Guidelines for the use of AI—including its possibilities and limitations—will be reviewed during the first session in relation to the course assignments (based on Arene's AI recommendations).

Failure to follow the given instructions may result in the rejection of the course. If this is the case only with a single assignment, the student will be required to redo the task to receive a passing grade.

As with all the courses, it is possible to apply for credit transfer or recognition of prior learning (RPL) for the course, including the opportunity to integrate prior experience through a process of learning validation.

For course assignments there will be two opportunities for retakes (3 attempts overall). If a student does not pass after 3 attempts, they will have to retake the course.

Siirry alkuun