Advanced Methods of Data ProcessingLaajuus (5 cr)
Code: TT00CC57
Credits
5 op
Objective
Kurssin tavoitteena on tutustua datan käsittelyn kehittyneisiin menetelmiin, käyttäen python-kirjastoja NumPy, Pandas, ja Matplotlib. Kurssilla käydään läpi datan ominaisuuksien (characteristic) laskemista, data-jakaumia, datana visualisointia ja säännöllisten lausekkeiden (regular expression, regex) käyttöä. Kurssilla tutustutaan myös datan klusterointiin.
Näitä menetelmiä käyttäen kurssilla luodaan datankäsittelyketju (pipeline), jolla tehdään datasta ominaisuussuunnittelua (feature engineering).
Assessment criteria, excellent (5)
Kurssi muodostuu useista harjoitustehtävistä. Arvosanaan 5 kurssin harjoituspisteistä täytyy kertyä vähintään 92%.
Assessment criteria, satisfactory (1)
Kurssi muodostuu useista harjoitustehtävistä. Arvosanaan 1 kurssin harjoituspisteistä täytyy kertyä vähintään 50%.
Enrollment
02.12.2024 - 31.12.2024
Timing
01.01.2025 - 31.07.2025
Number of ECTS credits allocated
5 op
Mode of delivery
Contact teaching
Unit
Teknologia
Teaching languages
- Finnish
Degree programmes
- Bachelor’s Degree in Information and Communication Technology
Teachers
- Pekka Huttunen
Groups
-
TTM24SAITTM24SAI
Objective
Kurssin tavoitteena on tutustua datan käsittelyn kehittyneisiin menetelmiin, käyttäen python-kirjastoja NumPy, Pandas, ja Matplotlib. Kurssilla käydään läpi datan ominaisuuksien (characteristic) laskemista, data-jakaumia, datana visualisointia ja säännöllisten lausekkeiden (regular expression, regex) käyttöä. Kurssilla tutustutaan myös datan klusterointiin.
Näitä menetelmiä käyttäen kurssilla luodaan datankäsittelyketju (pipeline), jolla tehdään datasta ominaisuussuunnittelua (feature engineering).
Evaluation scale
0 - 5
Assessment criteria, excellent (5)
Kurssi muodostuu useista harjoitustehtävistä. Arvosanaan 1 kurssin harjoituspisteistä täytyy kertyä vähintään 50%.
Assessment criteria, satisfactory (1)
Kurssi muodostuu useista harjoitustehtävistä. Arvosanaan 5 kurssin harjoituspisteistä täytyy kertyä vähintään 92%.
Prerequisites
Python-ohjelmointi, Nykyaikainen ohjelmistokehitys, Algebra
Enrollment
02.12.2024 - 31.12.2024
Timing
01.01.2025 - 31.07.2025
Number of ECTS credits allocated
5 op
Mode of delivery
Contact teaching
Unit
Teknologia
Teaching languages
- Finnish
Degree programmes
- Bachelor’s Degree in Information and Communication Technology
Teachers
- Pekka Huttunen
Groups
-
TTV23SRAATTV23SRAA
Objective
Kurssin tavoitteena on tutustua datan käsittelyn kehittyneisiin menetelmiin, käyttäen python-kirjastoja NumPy, Pandas, ja Matplotlib. Kurssilla käydään läpi datan ominaisuuksien (characteristic) laskemista, data-jakaumia, datana visualisointia ja säännöllisten lausekkeiden (regular expression, regex) käyttöä. Kurssilla tutustutaan myös datan klusterointiin.
Näitä menetelmiä käyttäen kurssilla luodaan datankäsittelyketju (pipeline), jolla tehdään datasta ominaisuussuunnittelua (feature engineering).
Evaluation scale
0 - 5
Assessment criteria, excellent (5)
Kurssi muodostuu useista harjoitustehtävistä. Arvosanaan 1 kurssin harjoituspisteistä täytyy kertyä vähintään 50%.
Assessment criteria, satisfactory (1)
Kurssi muodostuu useista harjoitustehtävistä. Arvosanaan 5 kurssin harjoituspisteistä täytyy kertyä vähintään 92%.
Prerequisites
Python-ohjelmointi, Nykyaikainen ohjelmistokehitys, Algebra
Enrollment
01.12.2023 - 31.01.2024
Timing
01.01.2024 - 08.04.2024
Number of ECTS credits allocated
5 op
Mode of delivery
Contact teaching
Unit
Teknologia
Teaching languages
- Finnish
Degree programmes
- Bachelor’s Degree in Information and Communication Technology
Teachers
- Pekka Huttunen
Groups
-
TTM23SAITTM23SAI
Objective
Kurssin tavoitteena on tutustua datan käsittelyn kehittyneisiin menetelmiin, käyttäen python-kirjastoja NumPy, Pandas, ja Matplotlib. Kurssilla käydään läpi datan ominaisuuksien (characteristic) laskemista, data-jakaumia, datana visualisointia ja säännöllisten lausekkeiden (regular expression, regex) käyttöä. Kurssilla tutustutaan myös datan klusterointiin.
Näitä menetelmiä käyttäen kurssilla luodaan datankäsittelyketju (pipeline), jolla tehdään datasta ominaisuussuunnittelua (feature engineering).
Evaluation scale
0 - 5
Assessment criteria, excellent (5)
Kurssi muodostuu useista harjoitustehtävistä. Arvosanaan 1 kurssin harjoituspisteistä täytyy kertyä vähintään 50%.
Assessment criteria, satisfactory (1)
Kurssi muodostuu useista harjoitustehtävistä. Arvosanaan 5 kurssin harjoituspisteistä täytyy kertyä vähintään 92%.
Prerequisites
Python-ohjelmointi, Nykyaikainen ohjelmistokehitys, Algebra
Enrollment
02.12.2022 - 31.01.2023
Timing
01.01.2023 - 01.05.2023
Number of ECTS credits allocated
5 op
Mode of delivery
Contact teaching
Unit
Teknologia
Teaching languages
- Finnish
Degree programmes
- Bachelor’s Degree in Information and Communication Technology
Teachers
- Pekka Huttunen
Groups
-
TTV22SAITTV22SAI
Objective
Kurssin tavoitteena on tutustua datan käsittelyn kehittyneisiin menetelmiin, käyttäen python-kirjastoja NumPy, Pandas, ja Matplotlib. Kurssilla käydään läpi datan ominaisuuksien (characteristic) laskemista, data-jakaumia, datana visualisointia ja säännöllisten lausekkeiden (regular expression, regex) käyttöä. Kurssilla tutustutaan myös datan klusterointiin.
Näitä menetelmiä käyttäen kurssilla luodaan datankäsittelyketju (pipeline), jolla tehdään datasta ominaisuussuunnittelua (feature engineering).
Evaluation scale
0 - 5
Assessment criteria, excellent (5)
Kurssi muodostuu useista harjoitustehtävistä. Arvosanaan 1 kurssin harjoituspisteistä täytyy kertyä vähintään 50%.
Assessment criteria, satisfactory (1)
Kurssi muodostuu useista harjoitustehtävistä. Arvosanaan 5 kurssin harjoituspisteistä täytyy kertyä vähintään 92%.
Prerequisites
Python-ohjelmointi, Nykyaikainen ohjelmistokehitys, Algebra
Enrollment
02.12.2022 - 31.01.2023
Timing
01.01.2023 - 12.04.2023
Number of ECTS credits allocated
5 op
Mode of delivery
Contact teaching
Unit
Teknologia
Teaching languages
- Finnish
Degree programmes
- Bachelor’s Degree in Information and Communication Technology
Teachers
- Pekka Huttunen
Groups
-
TTM22SAITTM22SAI
Objective
Kurssin tavoitteena on tutustua datan käsittelyn kehittyneisiin menetelmiin, käyttäen python-kirjastoja NumPy, Pandas, ja Matplotlib. Kurssilla käydään läpi datan ominaisuuksien (characteristic) laskemista, data-jakaumia, datana visualisointia ja säännöllisten lausekkeiden (regular expression, regex) käyttöä. Kurssilla tutustutaan myös datan klusterointiin.
Näitä menetelmiä käyttäen kurssilla luodaan datankäsittelyketju (pipeline), jolla tehdään datasta ominaisuussuunnittelua (feature engineering).
Evaluation scale
0 - 5
Assessment criteria, excellent (5)
Kurssi muodostuu useista harjoitustehtävistä. Arvosanaan 1 kurssin harjoituspisteistä täytyy kertyä vähintään 50%.
Assessment criteria, satisfactory (1)
Kurssi muodostuu useista harjoitustehtävistä. Arvosanaan 5 kurssin harjoituspisteistä täytyy kertyä vähintään 92%.
Prerequisites
Python-ohjelmointi, Nykyaikainen ohjelmistokehitys, Algebra